Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Explain the Collective Motion of Particles Called Fermions

30.03.2012
Fermions exhibit collective behavior in unexpected situations, according to new research in Nature

Some people like company. Others prefer to be alone. The same holds true for the particles that constitute the matter around us: Some, called bosons, like to act in unison with others. Others, called fermions, have a mind of their own.

Different as they are, both species can show "collective" behavior -- an effect similar to the wave at a baseball game, where all spectators carry out the same motion regardless of whether they like each other.

Scientists generally believed that such collective behavior, while commonplace for bosons, only appeared in fermions moving in unison at very long wavelengths. Now, however, collective behavior has been discovered at short wavelengths in one Fermi system, helium-3.

A team led by Professor Eckhard Krotscheck -- a physicist who recently joined the University at Buffalo from the Johannes Kepler University in Linz, Austria -- predicted the existence of the behavior using theoretical tools. Independently, but practically at the same time, a French team observed the collective behavior.

A paper detailing both the theoretical and experimental discoveries appears today in the journal Nature.

Krotscheck said the scientists' success in developing accurate theoretical predictions lay, in part, in the fact that they focused on mathematical tools instead of trying to reproduce experiments.

"Knowing how nature ticks at a microscopic scale, we set out to develop a robust theory that was capable of dealing with a wide range of situations and systems," Krotscheck said. "We demanded that our mathematical description is accurate for both fermions and bosons, in different dimensions, and for both coherent and incoherent excitations. Only after we were done, we looked at experiments."

Krotscheck's colleagues on the study include Henri Godfrin, Matthias Meschke and Ahmad Sultan of the Institut Néel, CNRS, and Université Joseph Fourier in France; Hans-Jochen Lauter of the Institut Laue-Langevin in France and Oak Ridge National Laboratory; and Helga Bohm and Martin Panholzer of the Institute for Theoretical Physics at Johannes Kepler University in Austria. Meschke also belongs to the Low Temperature Laboratory of Aalto University in Finland.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Designing ultrasound tools with Lego-like proteins

26.08.2016 | Life Sciences

Allergy Research: Response to House Dust Mites is Age-Dependent

26.08.2016 | Life Sciences

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>