Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New application of physics tools used in biology

A Lawrence Livermore National Laboratory physicist and his colleagues have found a new application for the tools and mathematics typically used in physics to help solve problems in biology.

Specifically, the team used statistical mechanics and mathematical modeling to shed light on something known as epigenetic memory -- how an organism can create a biological memory of some variable condition, such as quality of nutrition or temperature.

This DNA molecule is wrapped twice around a histone octamer, the major structural protein of chromosomes. New studies show they play a role in preserving biological memory when cells divide. Image courtesy of Memorial University of Newfoundland.

"The work highlights the interdisciplinary nature of modern molecular biology, in particular, how the tools and models from mathematics and physics can help clarify problems in biology," said Ken Kim, a LLNL physicist and one of the authors of a paper appearing in the Feb. 7 issue of Physical Review Letters.

Not all characteristics of living organisms can be explained by their genes alone. Epigenetic processes react with great sensitivity to genes' immediate biochemical surroundings -- and further, they pass those reactions on to the next generation.

The team's work on the dynamics of histone protein modification is central to epigenetics. Like genetic changes, epigenetic changes are preserved when a cell divides. Histone proteins were once thought to be static, structural components in chromosomes, but recent studies have shown that histones play an important dynamical role in the machinery responsible for epigenetic regulation.

When histones undergo chemical alterations (histone modification) as a result of some external stimulus, they trigger short-term biological memory of that stimulus within a cell, which can be passed down to its daughter cells. This memory also can be reversed after a few cell division cycles.

Epigenetic modifications are essential in the development and function of cells, but also play a key role in cancer, according to Jianhua Xing, a former LLNL postdoc and current professor at Virginia Tech. "For example, changes in the epigenome can lead to the activation or deactivation of signaling pathways that can lead to tumor formation," Xing added.

The molecular mechanism underlying epigenetic memory involves complex interactions between histones, DNA and enzymes, which produce modification patterns that are recognized by the cell. To gain insight into such complex systems, the team constructed a mathematical model that captures the essential features of the histone-induced epigenetic memory. The model highlights the "engineering" challenge a cell must constantly face during molecular recognition. It is analogous to restoring a picture with missing parts. The molecular properties of a species have been evolutionarily selected to allow them to "reason" what the missing parts are based on incomplete information pattern inherited from the mother cell.

The research team includes Tech graduate students Hang Zhang and Abhishek Mukhopadhyay and postdoc researcher Xiao-Jun Tian also of Virginia Tech, and Yujin Kim of Foothill High School in Pleasanton, Calif. During this research project, Xing served as a mentor to Yujin Kim.

The research is supported by National Science Foundation grants.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>