Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute team identifies a potential cause of Parkinson's disease

20.11.2012
Deciphering what causes the brain cell degeneration of Parkinson’s disease has remained a perplexing challenge for scientists.
But a team led by scientists from The Scripps Research Institute (TSRI) has pinpointed a key factor controlling damage to brain cells in a mouse model of Parkinson’s disease. The discovery could lead to new targets for Parkinson’s that may be useful in preventing the actual condition.

The team, led by TSRI neuroscientist Bruno Conti, describes the work in a paper published online ahead of print on November 19, 2012 by the Journal of Immunology.
Parkinson’s disease plagues about one percent of people over 60 years old, as well as some younger patients. The disease is characterized by the loss of dopamine-producing neurons primarily in the substantia nigra pars compacta, a region of the brain regulating movements and coordination.

Among the known causes of Parkinson’s disease are several genes and some toxins. However, the majority of Parkinson’s disease cases remain of unknown origin, leading researchers to believe the disease may result from a combination of genetics and environmental factors.
Neuroinflammation and its mediators have recently been proposed to contribute to neuronal loss in Parkinson’s, but how these factors could preferentially damage dopaminergic neurons has remained unclear until now.

Making Connections

Conti and his team were looking for biological pathways that could connect the immune system’s inflammatory response to the damage seen in dopaminergic neurons. After searching human genomics databases, the team’s attention was caught by a gene encoding a protein known as interleukin-13 receptor alpha 1 chain (IL-13Ra1), as it is located in the PARK12 locus, which has been linked to Parkinson’s.
IL-13rá1 is a receptor chain mediating the action of interleukin 13 (IL-13) and interleukin 4 (IL-4), two cytokines investigated for their role as mediators of allergic reactions and for their anti-inflammatory action.

With further study, the researchers made the startling discovery that in the mouse brain, IL-13Ra1 is found only on the surface of dopaminergic neurons. “This was a ‘Wow!’ moment,” said Brad Morrison, then a TSRI postdoctoral fellow and now at University of California, San Diego, who was first author of the paper with Cecilia Marcondes, a neuroimmunologist at TSRI.

Conti agrees: “I thought that these were very interesting coincidences. So we set out to see if we could find any biological significance.”

The scientists did—but not in the way they were expecting.

‘Something New Going On’

The scientists set up long-term experiments using a mouse model in which chronic peripheral inflammation causes both neuroinflammation and loss of dopaminergic neurons similar to that seen in Parkinson’s disease. The team looked at mice having or lacking IL-13Ra1 and then compared the number of dopaminergic neurons in the brain region of interest.

The researchers expected that knocking out the IL-13 receptor would increase inflammation and cause neuronal loss to get even worse. Instead, neurons got better.

“We were very surprised at first,” said Conti. “When we stopped to think, we got very excited because we understood that there was something new going on.”

Given that cells fared better without the receptor, the team next explored whether damage occurred when dopaminergic neurons that express IL-13Rá1 were exposed to IL-13 or IL-4. But exposure to IL-13 or IL-4 alone did not induce damage.

However, when the scientists exposed the neurons to oxidative compounds, they found that both IL-13 and IL-4 greatly enhanced the cytotoxic effects of oxidative stress.

“This finally helps us understand a basic mechanism of the increased susceptibility and preferential loss of dopaminergic neurons to oxidative stress associated with neuroinflammation,” said Marcondes.

The finding also demonstrated that anti-inflammatory cytokines could contribute to neuronal loss. In their article, the authors note they are not suggesting that inflammation is benign but that IL-13 and IL-4 may be harmful to neurons expressing the IL-13Rá1, despite their ability to ultimately reduce inflammation. “One could say that it is not the fall that hurts you, but how you stop,” said Conti.

More Clues

Along with these results, additional clues suggest that the IL-13 receptor system could be a major player in Parkinson’s. For instance, some studies show Parkinson’s as more prevalent in males, and the gene for IL-13Rá1 is located on the X chromosome, where genetic variants are more likely to affect males.

And, though not definitive, other studies have suggested that Parkinson’s disease might be more common among allergy sufferers. Since IL-13 plays a role in controlling allergic inflammation, Conti wonders if the IL-13 receptor system might explain this correlation.

If further research confirms the IL-13 receptor acts in a similar way in human dopaminergic neurons as in mice, the discovery could pave the way to addressing the underlying cause of Parkinson’s disease. Researchers might, for instance, find that drugs that block IL-13 receptors are useful in preventing loss of dopaminergic cells during neuroinflammation. And, since the IL-13 receptor forms a complex with the IL-4 receptor alpha, this might also be a target of interest. With much exciting research ahead, Conti said, “This is just the beginning.”

This research was funded by the Ellison Medical Foundation; National Institutes of Health grants AG028040 and DA030908; and the Ministry of Education, Culture, Sports, Science and Technology of Japan.

In addition to Morrison, Marcondes and Conti, the other authors on the paper, “IL-13Rá1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic systemic treatment with LPS,” were Daniel Nomura, Manuel Sanchez-Alavez, Alejandro Sanchez-Gonzalez, Indrek Saar, and Tamas Bartfai, from TSRI, Kwang-Soo Kim from Harvard University, Pamela Maher from the Salk Research Institute, and Shuei Sugama from the Nippon Medical School in Tokyo.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, TSRI has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Jann Coury | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>