Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking Digestive Enzymes May Reverse Shock, Stop Multiorgan Failure

25.01.2013
New research from the University of California, San Diego published in the Jan. 23 issue of Science Translational Medicine moves researchers closer to understanding and developing treatments for shock, sepsis and multiorgan failure.

Collectively, these maladies represent a major unmet medical need: they are the number one cause of mortality in intensive care units in the United States, with hundreds of thousands of deaths annually. There is currently no treatment for these conditions in spite of many clinical trials.

Most researchers agree that organ failure in shock and sepsis involves the intestine – and that it arises when the mucosal barrier of the small intestine becomes permeable. However, the mechanism by which this disrupted membrane is tied to vastly different kinds of shock, as well as multiorgan failure and death has not been understood.

In the case of sepsis (septic shock), for example, some researchers speculate that bacteria in the intestine and their toxins are responsible for organ failure. However, interventions against bacteria that are aimed at reducing mortality in patients undergoing septic shock have been unsuccessful in clinical trials.

Looking more broadly than bacteria, a team of researchers led by Geert W. Schmid-Schönbein in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering has carried out several years of careful analysis of the events in shock. That research led them to investigate the powerful, concentrated digestive enzymes in the intestine, the same enzymes that are part of daily digestion.

These digestive enzymes need to be restricted to the inside of the small intestine by the mucosal barrier. Once this barrier is disrupted, which can occur for a variety of reasons including dramatic loss of blood, physical puncture or opening (as in shrapnel injury or appendicitis), or degradation by bacterial toxins, digestive enzymes leak into the wall of the intestine and begin digesting it, a phenomenon the UC San Diego researchers call “autodigestion”. Once beyond the mucosal barrier of the small intestine, the UC San Diego researchers believe the digestive enzymes damage other organs by indiscriminately starting to degrade them, which can lead to multiorgan failure and death.

The new research, published in the Jan. 23 issue of Science Translational Medicine, provides novel results linking digestive enzymes to shock, sepsis and multiorgan failure. In particular, by administering digestive enzyme blockers directly into the small intestines of rats an hour after the onset of different types of shock, the researchers led by Schmid-Schönbein reversed the often fatal conditions, reduced injury to the heart and lungs, and greatly increased long-term survival of the animals from about 16 percent to 86 percent.

* The animals that received the digestive enzyme blockers in the lumen of the intestine regained their health and survived for long periods of time after shock. (Past experimental shock studies have been limited to relatively short observation periods.)

* The researchers showed a clear connection between direct inhibition of pancreatic digestive enzymes after the onset of three different shock models in rat, reduced organ damage and long-term survival of the animals. They demonstrated improved survival with three very different inhibitors of the digestive enzymes.

* All three of the pancreatic enzyme inhibitors, when delivered directly into the small intestine, but not when delivered intravenously, stopped autodigestion brought on by shock. (One of these enzyme inhibitors is already approved for use in the United States for other purposes).

* Blockade of the digestive enzymes was successful in three widely different forms of shock. The researchers studied hemorrhagic shock, septic shock and endotoxic shock.

For the first time, these studies specifically indicate that it is possible to stop autodigestion by blocking the digestive enzymes in animals with induced shock. “We saw far less damage to organs, faster recovery of the animals, and a reduction of mortality in shock,” said Research Associate Frank DeLano, who carried out the studies with Schmid-Schönbein.

Autodigestion
The UC San Diego bioengineers have described aspects of autodigestion, as well as the potential for stopping it (and treating shock) by blocking the powerful digestive enzymes that have breached the intestine barrier, in numerous papers in the scientific literature.

This research has the potential to lead to therapies that greatly reduce fatalities, morbidity, and length of stay in intensive care units in patients undergoing various forms of shock.

“Organisms rely on full containment of the digestive enzymes in the small intestine. The moment the intestinal mucosal barrier is compromised, the digestive enzymes escape and then we are no longer digesting just our food, but we may be digesting our organs,” said Schmid-Schönbein.

A Phase 2 clinical pilot study is under way to test the efficacy and safety of a new method of administering an enzyme inhibitor for critically ill patients such as those with new-onset sepsis and septic shock, post-operative complications, and new-onset gastrointestinal bleeding.

In addition, a published clinical report points to successful treatment of a patient with severe septic shock with digestive enzyme inhibitors delivered directly into the intestine.

In shock, there is a major failure of the mucosal barrier
in the small intestine. There may also be other conditions in which the failure of this barrier is less severe, and digestive enzymes leak more slowly into the blood stream. The effect on human health of slow leakage of digestive enzymes into the body with low level of autodigestion remains to be explored, Schmid-Schönbein explained.
Funding
This research was supported by an unrestricted gift from Leading BioSciences Inc. and by National Institutes of Health (NIH) grants HL 67825 and GM 85072.
Competing interests
Geert W. Schmid-Schönbein is a scientific advisor to Leading BioSciences Inc.
David B. Hoyt, Frank A. DeLano and Geert W. Schmid-Schönbein own equity in InflammaGen, a company by Leading BioSciences Inc., which develops therapy for shock patients.

“Pancreatic Digestive Enzyme Blockade in the Intestine Increases Survival After Experimental Shock,” by Frank A. DeLano from the Department of Bioengineering, and The Institute of Engineering in Medicine at University of California, San Diego; David B. Hoyt from the American College of Surgeons; and Geert W. Schmid-Schönbein from the Department of Bioengineering, and The Institute of Engineering in Medicine at University of California, San Diego. Published in the 23 Jan. issue of Science Translational Medicine.

Daniel Kane | Newswise
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>