Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nottingham technology in heart development breakthrough

26.02.2013
Technology developed at The University of Nottingham has been used in a breakthrough study aimed at developing the first comprehensive model of a fully functioning fetal heart.

The abdominal fetal ECG device, designed originally by academics in the University’s Department of Electrical and Electronic Engineering and on commercial sale throughout the world since 2008 through the University spin-out company Monica Healthcare Ltd, has been used to observe living fetal hearts of babies in their mothers’ wombs.

The collaborative study led by experts at The University of Leeds has discovered that the walls of the human heart are a disorganised jumble of tissue until relatively late in pregnancy — with development much slower compared to other mammals.

Professor Barrie Hayes-Gill, Professor of Electronic Systems and Medical Devices at The University of Nottingham and joint founder and research director at Monica Healthcare said: “It’s absolutely fantastic to see our device being used to detect fetal ECG morphology (i.e. ECG shape) in a non-invasive manner from the surface of the maternal abdomen. In this study the Monica device has been specifically deployed to observe the development of the fetal heart as it goes through gestation.

“It’s an important development and we are delighted to see Nottingham technology playing such an integral part of the study. We expect that non-invasive morphological analysis during pregnancy and labour will become routine clinical practice in years to come as Monica continues to gain traction in the marketplace.”

The fetal heart monitor is a portable, non-invasive device which attaches to the mother’s abdomen and measures the electrical activity from the heart of the baby inside her womb. It is currently being used worldwide to monitor fetal heart rates during labour and delivery.

The device uses complex algorithms to correctly identify signals related to the fetal heart rate (FHR) using sensitive ECG-style electrodes. This method of using electrophysiological signals differs from current external monitoring devices that collect FHR and uterine activity data based on physical changes (e.g. change in reflected sound waves and changes on strain gauge) that may cause problems in data interpretation.

The monitor is simple to use, beltless, requires no wires to connect to the display or printer. There is also no need for the constant re-positioning of transducers, which is required with older technology and the mother is free to walk around if necessary.

As part of their study, which has been published in the Journal of the Royal Society Interface Focus, the team from the University of Leeds used the device to administer a weekly fetal ECG recording from 18 weeks until just before delivery.

The data from this, alongside two different MRI scans from the hearts of dead fetuses, was incorporated into a 3D computerised model built up using information about the structure, shape and size of the different components of the heart.

Early results suggest that the human heart may develop on a different timeline from other mammals. While the tissue in the walls of a pig heart develops a highly organised structure at a relatively early stage of a fetus’ development, their work suggests there is little organisation in the human heart’s cells until 20 weeks into pregnancy. Despite this, the human heart has a regular heartbeat from about 22 days.

Developing an accurate, computerised simulation of the fetal heart is critical to understanding normal heart developments in the womb and, eventually, to opening new ways of detecting and dealing with some functional abnormalities early in pregnancy.

Dr Eleftheria Pervolaraki, lead researcher on the project at the University of Leeds’ School of Biomedical Sciences, said: “For a heart to be beating effectively, we thought you needed a smoothly changing orientation of the muscle cells through the walls of the heart chambers. Such an organisation is seen in the hearts of all healthy adult mammals.

“Fetal hearts in other mammals such as pigs, which we have been using as models, show such an organisation even early in gestation, with a smooth change in cell orientation going through the heart wall. But what we actually found is that such organisation was not detectable in the human fetus before 20 weeks,” she said.

Professor Arun Holden, from The University of Leeds’ School of Biomedical Sciences, said: “The development of the fetal human heart is on a totally different timeline, a slower timeline, from the model that was being used before. This upsets our assumptions and raises new questions. Since the wall of the heart is structurally disorganised, we might expect to find arrhythmias, which are a bad sign in an adult. It may well be that in the early stages of development of the heart arrhythmias are not necessarily pathological and that there is no need to panic if we find them. Alternatively, we could find that the disorganisation in the tissue does not actually lead to arrhythmia.”

A detailed computer model of the activity and architecture of the developing heart will help make sense of the limited information doctors can obtain about the fetus using non-invasive monitoring of a pregnant woman.

Professor Holden said: “It is different from dealing with an adult, where you can look at the geometry of an individual’s heart using MRI (Magnetic Resonance Imaging) or CT (Computerised Tomography) scans. You can’t squirt x-rays at a fetus and we also currently tend to avoid MRI, so we need a model into which we can put the information we do have access to.”

He added: “Effectively, at the moment, fetal ECGs are not really used. The textbooks descriptions of the development of the human heart are still founded on animal models and 19th century collections of abnormalities in museums. If you are trying to detect abnormal activity in fetal hearts, you are only talking about third trimester and postnatal care of premature babies. By looking at how the human heart actually develops in real life and creating a quantitative, descriptive model of its architecture and activity from the start of a pregnancy to birth, you are expanding electrocardiology into the fetus.”

For up to the minute media alerts, follow us on Twitter or find out more on our Press Office blog

Notes to editors: The University of Nottinghamhas 42,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It was ‘one of the first to embrace a truly international approach to higher education’, according to the Sunday Times University Guide 2013. It is also one of the most popular universities among graduate employers, one of the world’s greenest universities, and winner of the Times Higher Education Award for ‘Outstanding Contribution to Sustainable Development’. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong and the QS World Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University aims to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Anniversary Prize for Higher and Further Education for its research into global food security.

Emma Thorne - Media Relations Manager
Email: emma.thorne@nottingham.ac.uk
Phone: +44 (0)115 951 5793
Location: University Park

Emma Thorne | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Medical Engineering:

nachricht Termination of lethal arrhythmia with light
13.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Sensor systems identify senior citizens at risk of falling within 3 weeks
29.08.2016 | University of Missouri-Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

A blue stoplight to prevent runaway photosynthesis

27.09.2016 | Life Sciences

Malaysia's unique freshwater mussels in danger

27.09.2016 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>