Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice technique points toward 2-D devices

28.01.2013
Researchers create fine patterns that combine single-atom-thick graphene, boron nitride

Rice University scientists have taken an important step toward the creation of two-dimensional electronics with a process to make patterns in atom-thick layers that combine a conductor and an insulator.

The materials at play – graphene and hexagonal boron nitride – have been merged into sheets and built into a variety of patterns at nanoscale dimensions.

Rice introduced a technique to stitch the identically structured materials together nearly three years ago. Since then, the idea has received a lot of attention from researchers interested in the prospect of building 2-D, atomic-layer circuits, said Rice materials scientist Pulickel Ajayan. He is one of the authors of the new work that appears this week in Nature Nanotechnology. In particular, Ajayan noted that Cornell University scientists reported an advance late last year on the art of making atomic-layer heterostructures through sequential growth schemes.

This week's contribution by Rice offers manufacturers the possibility of shrinking electronic devices into even smaller packages. While Rice's technical capabilities limited features to a resolution of about 100 nanometers, the only real limits are those defined by modern lithographic techniques, according to the researchers. (A nanometer is one-billionth of a meter.)

"It should be possible to make fully functional devices with circuits 30, even 20 nanometers wide, all in two dimensions," said Rice researcher Jun Lou, a co-author of the new paper. That would make circuits on about the same scale as in current semiconductor fabrication, he said.

Graphene has been touted as a wonder material since its discovery in the last decade. Even at one atom thick, the hexagonal array of carbon atoms has proven its potential as a fascinating electronic material. But to build a working device, conductors alone will not do. Graphene-based electronics require similar, compatible 2-D materials for other components, and researchers have found hexagonal boron nitride (h-BN) works nicely as an insulator.

H-BN looks like graphene, with the same chicken-wire atomic array. The earlier work at Rice showed that merging graphene and h-BN via chemical vapor deposition (CVD) created sheets with pools of the two that afforded some control of the material's electronic properties. Ajayan said at the time that the creation offered "a great playground for materials scientists."

He has since concluded that the area of two-dimensional materials beyond graphene "has grown significantly and will play out as one of the key exciting materials in the near future."

His prediction bears fruit in the new work, in which finely detailed patterns of graphene are laced into gaps created in sheets of h-BN. Combs, bars, concentric rings and even microscopic Rice Owls were laid down through a lithographic process. The interface between elements, seen clearly in scanning transmission electron microscope images taken at Oak Ridge National Laboratories, shows a razor-sharp transition from graphene to h-BN along a subnanometer line.

"This is not a simple quilt," Lou said. "It's very precisely engineered. We can control the domain sizes and the domain shapes, both of which are necessary to make electronic devices."

The new technique also began with CVD. Lead author Zheng Liu, a Rice research scientist, and his colleagues first laid down a sheet of h-BN. Laser-cut photoresistant masks were placed over the h-BN, and exposed material was etched away with argon gas. (A focused ion beam system was later used to create even finer patterns, down to 100-nanometer resolution, without masks.) After the masks were washed away, graphene was grown via CVD in the open spaces, where it bonded edge-to-edge with the h-BN. The hybrid layer could then be picked up and placed on any substrate.

While there's much work ahead to characterize the atomic bonds where graphene and h-BN domains meet and to analyze potential defects along the boundaries, Liu's electrical measurements proved the components' qualities remain intact.

"One important thing Zheng showed is that even by doing all kinds of growth, then etching, then regrowth, the intrinsic properties of these two materials are not affected," Lou said. "Insulators stay insulators; they're not doped by the carbon. And the graphene still looks very good. That's important, because we want to be sure what we're growing is exactly what we want."

Liu said the next step is to place a third element, a semiconductor, into the 2-D fabric. "We're trying very hard to integrate this into the platform," he said. "If we can do that, we can build truly integrated in-plane devices." That would give new options to manufacturers toying with the idea of flexible electronics, he said.

"The contribution of this paper is to demonstrate the general process," Lou added. "It's robust, it's repeatable and it creates materials with very nice properties and with dimensions that are at the limit of what is possible."

Co-authors of the paper are graduate students Lulu Ma, Gang Shi, Yongji Gong, Ken Hackenberg, Sidong Lei and Jiangnan Zhang; Aydin Babakhani, an assistant professor of electrical and computer engineering; and Robert Vajtai, a faculty fellow in mechanical engineering and materials science, all at Rice; Wu Zhou, a research associate at Vanderbilt University and Wigner Fellow at Oak Ridge National Laboratory; Xuebei Yang, a former research assistant at Rice, now at Agilent Technologies; Jingjiang Yu, a scientist at Agilent Technologies; and Juan-Carlos Idrobo, a research professor of physics at Vanderbilt and a guest scientist at Oak Ridge. Lou is an associate professor of mechanical engineering and materials science. Ajayan is the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice.

The work was supported by U.S. Army Research Office and U.S. Office of Naval Research Multidisciplinary University Research Initiative grants; the Nanoelectronics Research Corp; a U.S.-Japan Cooperative Research and Education in Terahertz grant; the Welch Foundation; the National Science Foundation; and Oak Ridge National Laboratory's Shared Research Equipment User Program, sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy.

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Lou Group: http://mems.rice.edu/~jlou/

Ajayan Group: http://www.owlnet.rice.edu/~rv4/Ajayan/

Graphene and boron nitride lateral heterostructures for atomically thin circuitry: http://www.nature.com/nature/journal/v488/n7413/full/nature11408.html

Images for download:

http://news.rice.edu/wp-content/uploads/2013/01/G-hBN-1-WEB.jpg

A photolithography process was used at Rice University to develop a patterned, one-atom-thick hybrid of graphene and hexagonal boron nitride (hBN). Graphene is a conductor and hBN is an insulator, so the 2-D material has unique electrical properties. (Credit: Zheng Liu/Rice University)

http://news.rice.edu/wp-content/uploads/2013/01/G-hBN-2-WEB.jpg

A scanning transmission electron microscope image shows a razor-sharp transition between the hexagonal boron nitride domain at top left and graphene at bottom right in the 2-D hybrid material created at Rice University. (Credit: Oak Ridge National Laboratories/Rice University)

http://news.rice.edu/wp-content/uploads/2013/01/G-hBN-3-WEB.jpg

An atom-thick Rice Owl (scale bar equals 100 micrometers) was created to show the ability to make fine patterns in hybrid graphene/hexagonal boron nitride (hBN). In this image, the owl is hBN and the lighter material around it is graphene. The ability to pattern a conductor (graphene) and insulator (hBN) into a single layer may advance the ability to shrink electronic devices. (Credit: Zheng Liu/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRice.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>