Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bionanotechnology has new face, world-class future at Florida State

20.04.2010
Imagine the marriage of hard metals or semiconductors to soft organic or biological products. Picture the strange, wonderful offspring –– hybrid materials never conceived by Mother Nature.

The applications in medicine and manufacturing are staggering, says biologist Steven Lenhert, the newest faculty face of nanoscience at The Florida State University.

How about a mobile phone fitted with a "lab on a chip" that can diagnose illness? That and much more are real possibilities, according to Lenhert.

"Nanotechnology is already saving lives, and will be crucial to the sustainability of life as we know it on Earth," he said.

Lenhert is the lead author of a groundbreaking paper published in the April 2010 edition of Nature Nanotechnology –– the discipline's premier journal.

At age 32, he is internationally recognized for his innovative work in the evolving field of bionanotechnology –– the union of biology and nanotechnology –– and a related process, Dip-Pen Nanolithography (DPN), which uses a sharp, pen-like device and "ink" to "write" nanoscale patterns on solid surfaces. Both are capable of producing materials with enormous potential not only for diagnostic applications in health care but also for virtually any field that uses materials, from tissue engineering to drug discovery to computer chip fabrication.

In other words, it is big-deal technology on a nanoscale. Nanotechnology encompasses objects that measure just 100 nanometers or less in at least one of their dimensions. One nanometer equals a billionth of a meter.

"Think of one nanometer as the length that a hair grows in one second," Lenhert said.

Florida State hired Lenhert to further enhance the interdisciplinary cluster of faculty who form the Integrative NanoScience Institute (INSI) –– a key part of the university's ambitious Pathways of Excellence initiative. His cutting-edge work in nanobiology is expected to serve as an ideal complement to the materials science and engineering research already underway there.

Together, they mean to make the institute a world-class bionanotechnology center.

As an INSI member, Lenhert will collaborate on the Institute's cutting-edge research with distinguished faculty from cell and molecular biology, chemistry and biochemistry, materials science, chemical and biomedical engineering, and physics.

The paper he and coworkers published ("Lipid multilayer gratings") in Nature Nanotechnology describes a DPN-based technique he devised at his former institutions, Germany's University of Muenster and Karlsruhe Institute of Technology. The technique has promising biological applications. It enables the color-coded detection of various molecules through diffraction of light and thin, nanoscale layers of lipids.

"We ended up with a fundamentally new class of material –– in effect, a biometamaterial, which is a biomaterial that doesn't exist in nature," Lenhert said.

"It acts as a biosensor, which responds to the presence of a biological agent by combining a sensitive biological element with a physical device," he said. "Our biosensor actually makes the physical device out of the biological element itself.

"The closest real-world application for this material is in medical diagnostics," Lenhert said. "The idea would be to have a portable, affordable and disposable chip that could allow your mobile phone to diagnose medical conditions that currently require a visit to a doctor and samples being sent to a laboratory. This concept is known as 'lab on a chip,' and it could analyze, say, blood or urine. A home pregnancy test is a similar example that already works, but other kinds of tests still need actual, advanced laboratories."

Lenhert is a chess master who plays competitively, when he's not in his laboratory. Born in Salt Lake City, he received his doctoral degree in 2004 from the University of Muenster. Until recently, he was leading a nanoscience research group in Germany. Then, at a conference in 2009, he came across a Florida State flyer about the Integrated NanoScience Institute.

"It contained what I considered to be the perfect description of my scientific motivation," Lenhert said. "Now, here I am. What's most exciting and impressive to me is the way all the INSI members, from various FSU departments, suddenly feel right at home together because of the word 'nanoscience.'

"As a graduate student I was lucky to be able to work as a bridge between different departments, including biology, medicine, chemistry and physics," he said. "I realized that a lot of the solutions to a particular problem might already exist just across a street. That's why I like the INSI cluster at Florida State, because it is based on this principle."

"Steve Lenhert is not a traditional biologist — he is doing tomorrow's biology today," said FSU Professor Bryant Chase, chairman of the biological science department.

"His training in nanotechnology as well as biology allows him to answer biological questions through novel experiments that could not have been performed before," Chase said. "He is designing new tools with unprecedented applications in science and medicine. He also participates in an initiative called 'NanoProfessor,' which teaches faculty how to make nanoscience more accessible and engaging for undergraduate students. Steve is a 'wunderkind.'"

Learn more about Florida State's Integrative NanoScience Institute at http://insi.fsu.edu/

Steven Lenhert | EurekAlert!
Further information:
http://www.bio.fsu.edu

More articles from Interdisciplinary Research:

nachricht Body Talk: A New Crowdshaping Technology Uses Words to Create Accurate 3D Body Models
27.07.2016 | Max-Planck-Institut für Intelligente Systeme

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Hans Clevers to receive the Körber Prize 2016

25.08.2016 | Awards Funding

An effective and low-cost solution for storing solar energy

25.08.2016 | Power and Electrical Engineering

PRB projects world population rising 33 percent by 2050 to nearly 10 billion

25.08.2016 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>