Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low Cost, Dexterous Robotic Hand Operated by Compressed Air

The Robotics and Mechanisms Laboratory (RoMeLa) of the College of Engineering at Virginia Tech has developed a unique robotic hand that can firmly hold objects as heavy as a can of food or as delicate as a raw egg, while dexterous enough to gesture for sign language.

Named RAPHaEL (Robotic Air Powered Hand with Elastic Ligaments), the fully articulated robotic hand is powered by a compressor air tank at 60 psi and a novel accordion type tube actuator. Microcontroller commands operate the movement to coordinate the motion of the fingers.

“This air-powered design is what makes the hand unique, as it does not require the use of any motors or other actuators, the grasping force and compliance can be easily adjusted by simply changing the air pressure,” said Dennis Hong, RoMeLa ( director and the faculty adviser on the project. RoMeLa is part of Virginia Tech’s department of mechanical engineering (ME).

The grip derives from the extent of pressure of the air. A low pressure is used for a lighter grip, while a higher pressure allows for a sturdier grip. The compliance of compressed air also aids in the grasping as the fingers can naturally follow the contour of the grasped object.

“There would be great market potential for this hand, such as for robotic prosthetics, due to the previously described benefits, as well as low cost, safety and simplicity,” Hong said. The concept has won RoMeLa first place in the recent 2008-2009 Compressed Air and Gas Institute ( (CAGI)’s Innovation Award Contest, with team members sharing $2,500 and the College of Engineering receiving a separate $8,000 monetary award.

The $10,500 prize was announced in April by the Cleveland, Ohio-based CAGI, an industry organization. The design competition was an invitation-only program, with projects overviews – including written reports and video – being sent to the judging panel. Teams from Virginia Tech, the Milwaukee School of Engineering and Buffalo State College each submitted entries on their air-powered designs for judging. Six teams in all participated, according to Hong.

It is the second year in a row that RoMeLa has won first place in the CAGI competition. A judge on the panel said of the robotic hand, “It is a cutting edge concept, and the engineering was no less than brilliant.”

Student team members, all ME majors, are:

• Colin Smith of Reston, Va., a senior

• Kyle Cothern of Fredericksburg, Va., a junior.

• Carlos Guevara of El Salvador, a senior.

• Alexander McCraw of York, Pa., a senior.

RAPHaEL is just part of a larger RoMeLa project: The humanoid robot known as CHARLI (Cognitive Humanoid Robot with Learning Intelligence). The hand already is on its second prototype design, with the newer model to be used by CHARLI. Once the newer model hand is connected to the larger body, it will be able to pick up – not just grasp and hold – objects as would a person.

Hong has said CHARLI is the first full-sized bipedal walking humanoid robot to be built entirely in the United States. The 5-foot tall robot will be used as a general humanoid research platform as well as for the RoboCup Humanoid Teen size league for RoboCup 2010.

The larger CHARLI project is partially sponsored by the Virginia Tech Student Engineering Council ( and by the National Science Foundation (NSF). Hong said he hopes to have CHARLI one day walking about around campus and completing tours of Virginia Tech for visitors and potential students.

RoMeLa already has captured several prizes for its work, including the grand prize at the 2008 International Capstone Design Fair ( for a trio of pole-climbing serpentine robots designed to take the place of construction workers tasked with dangerous jobs such as inspecting high-rises or underwater bridge piers.

Other award-winning student RoMeLa projects ( include TEAM DARwIn winning RoboCup 2007, an international autonomous robot soccer competition. The group was the first and only team from the United States ever to qualify for the RoboCup humanoid division.

The group also won third place at the 2007 DARPA Urban Challenge (, an autonomous vehicle race in the urban environment.

Hong ( received his B.S. degree in mechanical engineering from the University of Wisconsin-Madison in 1994, and his master of science and Ph.D. degrees in mechanical engineering from Purdue University in 1999 and 2002, respectively.

The College of Engineering ( at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation and the world.

Steven Mackay | Newswise Science News
Further information:

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>