Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warm sea water is melting Antarctic glaciers

The ice sheet in West Antarctica is melting faster than expected.
New observations published by oceanographers from the University of Gothenburg and the US may improve our ability to predict future changes in ice sheet mass. The study was recently published in the journal Nature Geoscience.

A reduction in the inland ice in the Antarctic and on Greenland will affect the water levels of the world’s oceans.
It is therefore problematic that we currently have insufficient knowledge about the ocean circulation near large glaciers in West Antarctica. This means that researchers cannot predict how water levels will change in future with any degree of certainty.

“There is a clear reduction in the ice mass in West Antarctica, especially around the glaciers leading into the Amundsen Sea,” says researcher Lars Arneborg from the Department of Earth Sciences at the University of Gothenburg.

Together with his research colleagues Anna Wåhlin, Göran Björk and Bengt Liljebladh, he has studied the ocean circulation in the Amundsen Sea.

One reason why West Antarctica is particularly sensitive is that the majority of the ice rests on areas that are below sea level. Warm sea water penetrates beneath the ice, causing increased melting from underneath.

“It is therefore probably a change in the ocean circulation in the Amundsen Sea that has caused this increased melting,” continues Arneborg.

Until now, researchers have been referred to studies that use high-resolution computer models.

“But there have been very few oceanographic measurements from the Amundsen Sea to confirm or contradict the results from the computer models. Nor has there been any winter data. Sea ice and icebergs have made it impossible to get there in the winter, and it isn’t easy to have instruments in place all year round.”

However, since 2010 the researchers from Gothenburg have managed to have instruments positioned in the Amundsen Sea, enabling them to measure the inward flow of warm sea water against the glaciers.
The observations show that the warm sea water flows in against the glaciers in an even stream all year round, in contrast to the model results which suggested a strong annual cycle.

“This shows just how important observations are for investigating whether the models we use describe something that resembles reality. Warm ocean currents have caused much more melting than any model has predicted, both in West Antarctica and around Greenland.

The researchers want more and longer time series of observations in order to improve the models and achieve a better understanding.

“Only then will we be able to say anything about how the ice masses of the Antarctic and Greenland will change in the future.”

Lars Arneborg, Department of Earth Sciences
Tel.: +46 (0)31 786 2886, e-mail:

Helena Aaberg | idw
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>