Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Rethink Massive Iceberg Shifts That Have Occurred In North Atlantic

16.01.2014
Some Heinrich events – periodic massive iceberg surges into the North Atlantic that were previously thought to have weakened the global ocean conveyor belt circulation and sent Earth’s climate into the deep freeze – may actually have been caused by changes in atmospheric circulation patterns, say a team of researchers that includes two Texas A&M University professors.

Matthew Schmidt, associate professor of oceanography, and Ping Chang, professor of oceanography and atmospheric science and director of the Texas Center for Climate Studies, along with colleagues from Georgia Tech, Princeton, the Woods Hole Oceanographic Institution, the University of Cambridge and Germany’s University of Bremen, have had their findings published in the latest issue of Nature Geoscience.

To make this discovery, the researchers studied the chemistry of shells produced by benthic foraminifera, single-celled organisms that live near the sea floor. These benthic foraminifera were collected from sediment cores recovered from the margins of the Florida Straits. By studying the oxygen isotope composition of the shells, the researchers were able to reconstruct past changes in Florida Current transport, which is directly related to the strength of the global conveyor belt circulation.

Researchers have known for years about Heinrich Events, periods of extreme cold in the North Atlantic. These events were named for the geologist who first discovered them, Hartmut Heinrich. They occurred during the last ice age when immense icebergs broke loose from glaciers, and as they melted, deposited ice rafted debris on the sea floor. Six of these Heinrich events have been identified, and they are known as H1 through H6.

“While there is evidence that the last Heinrich Event that occurred around 17,000 years ago was indeed caused by a dramatic reduction in the ocean’s conveyor belt circulation, our new reconstruction of ocean circulation patterns during some earlier Heinrich Events, that occurred during the last ice age between 20,000 and 30,000 years ago, did not reveal significant changes in ocean circulation,” Schmidt explains. “Nevertheless, these Heinrich Events were experienced worldwide, so they must have been transmitted via the atmosphere.”

Schmidt says that the study “has important implications for our understanding of the mechanisms of abrupt climate change in the past. The more we know about how climate changed in the past, the better prepared we will be for predicting future climate variability.”

Matthew Schmidt | Newswise
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht Volcanic eruption masked acceleration in sea level rise
26.08.2016 | National Science Foundation

nachricht Biomass turnover time in ecosystems is halved by land use
23.08.2016 | Alpen-Adria-Universität Klagenfurt

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Cleanroom on demand

29.08.2016 | Power and Electrical Engineering

Crystal unclear: Why might this uncanny crystal change laser design?

29.08.2016 | Materials Sciences

Spherical tokamaks could provide path to limitless fusion energy

29.08.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>