Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-performance steel with potential applications in the automotive industry

03.05.2012
Steel is the most important material for the automotive industry. 55% of the auto body components are made of steel. Optimizing the properties of those materials can reduce weight and costs enormously. A new class of steels developed at the MPIE, the “lean maraging TRIP steels”, fulfills these requirements and offers potential applications in the automotive sector.

The requirements for steels applied in the automotive industry are manifold: strong steels are used for centre pillars, the part of a car installed next to the driver’s door. On the other hand, the front part of a car must consist of strong and at the same time ductile material.



Result of an analysis by the 3D-atom probe. The martensitic and austenitic phases are visible. Even single atoms are recognized by this technique – each dot represents the location of one atom while the surfaces are regions of iso-concentration of a certain element. Quelle: MPIE

Thus, in case of a crash, the shock energy can be absorbed and the driver is protected. Dr. Dirk Ponge, group leader at the MPIE, has achieved to combine both requirements in one class of new steel, named “lean maraging TRIP steels”. Due to a high nickel content conventional maraging steels are very strong and used in air plane landing gear. The term maraging merges ‘martensite’ and ‘aging’.

The name is derived from a special heat treatment (aging) which strengthens an already quite strong martensite structure. ”The use of a high amount of nickel results in a strong steel, but also caused an expensive production.” That’s why Ponge reduced the nickel content and found a surprising effect.

Combination of strength and ductility

During heat treatment, the formation of intermetallic precipitations causes an increase in strength. At the same time austenite is formed which is the reason for the increase in ductility and the basis for a second effect: the TRIP effect. TRIP stands for transformation induced plasticity. Triggered by a deformation process, a phase transformation from metastable austenite to martensite takes place in the material. This leads to an increase in strain hardening rate and enables to reach high elongations. With both these effects occurring, one obtains a good combination of tensile strength and total elongation up to 30.000 MPa%. The intermetallic precipitations, which are responsible for the excellent properties are analysed with the 3-dimensional atom probe.

Optimisation by computational materials design

Currently, the development of these steels is being optimised. Ponge expects to further decrease the production costs and to improve the mechanical properties by modifying the alloy composition. This is performed in close cooperation with the department of Computational Materials Design. The department of Prof. Jörg Neugebauer is calculating with the means of quantum physics, which precipitations are formed in the material with respect to the composition. This improves the efficiency of the further development and reduces the number of experiments. A systematic and application-oriented development of the lean high-performance steels is on the way.

Yasmin A. Salem, M.A.

Public Relations
Max-Planck-Institut für Eisenforschung GmbH
Max-Planck-Str. 1
40237 Düsseldorf
Germany
phone: +49 (0)211 6792 722
fax: +49 (0)211 6792 218

Yasmin A. Salem | MPIE
Further information:
http://www.mpie.de

More articles from Automotive Engineering:

nachricht New algorithm for optimized stability of planar-rod objects
11.08.2016 | Institute of Science and Technology Austria

nachricht Automated driving: Steering without limits
05.02.2016 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

All articles from Automotive Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>