Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Worldwide study finds that fertilizer destabilizes grasslands

'The bad years are going to be worse'

Fertilizer could be too much of a good thing for the world's grasslands, according to study findings to be published online Feb. 16 by the journal Nature.

This map shows Nutrient Network sites studied. Numbers correspond to chart included with Nature article describing each site.

Credit: Nature

The worldwide study shows that, on average, additional nitrogen will increase the amount of grass that can be grown. But a smaller number of species thrive, crowding out others that are better adapted to survive in harsher times. It results in wilder swings in the amount of available forage.

"More nitrogen means more production, but it's less stable," said Johannes M.H. Knops, a University of Nebraska-Lincoln biologist and one of the paper's international co-authors. "There are more good years and more bad years. Not all years are going to be good and the bad years are going to be worse."

The three-year study monitored real-world grasslands at 41 locations on five continents. The sites included alpine grasslands in China, tallgrass prairies in the United States, pasture in Switzerland, savanna in Tanzania and old fields in Germany. Two sites in Nebraska were part of the study, the Cedar Point Biological Station near Ogallala and the Barta Brothers Ranch in the Sandhills near Valentine.

The study found common trends among grasslands around the world:

•Natural -- unfertilized -- grasslands with a variety of grass species have more stability because of species "asynchrony," which means that different species thrive at different times so that the grassland produces more consistently over time. This finding was consistent with the findings of previous, single-site studies as well as previous biodiversity experiments conducted in Europe.

•Fertilized plots saw declines in the numbers of species compared to unfertilized control plots. The plots averaged from 4.4 species to 32.3 species per square meter and declined by an average of 1.3 species per site.

•Fertilization reduced species asynchrony and increased the variation in production levels over time compared to control plots. This weakened the benefits of species diversity seen in the un-manipulated plots.

While public attention has grown about elevated levels of carbon dioxide and global warming, Knops said elevated levels of mineral nitrogen in the environment also are concerning. While it's rare for ranchers and farmers to fertilize rangeland and pasture, grasslands are affected by nitrogen deposition that results from burning fossil fuels, as well as from fertilizer runoff and ammonia volatilization from cropland.

Knops said fertilizer overuse could intensify the detrimental effects of drought on grasslands, such as the drought that devastated cattle herds in Texas and Oklahoma from 2011-13, when Texas lost about 15 percent of its cattle herd, or about 2 million animals.

It also could have ripple effects during bad years by reducing the plant cover, which increases erosion, and decreases water filtration and carbon sequestration benefits provided by grasslands.

The Nature article, "Eutrophication weakens stabilizing effects of diversity in natural grasslands," is one of several research articles on the relationships between grassland diversity, productivity and stability, generated by the Nutrient Network experiment. Knops called it an unprecedented experiment.

"In the past you didn't see a collaborative effort at a really large scale like this in biology or in ecology," he said.

For more information about the Nutrient Network effort, visit

Johannes M.H. Knops | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>