Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corn could help farmers fight devastating weed

07.01.2013
Versatile and responsive to management, corn is grown throughout the world for everything from food to animal feed to fuel. A new use for corn could soon join that list, as researchers in China investigate the crop's ability to induce "suicidal germination" in a devastating parasitic weed.

Known commonly as sunflower broomrape, the weed causes extensive damage to vegetable and row crops in Asia, Africa, and southern Eastern Europe. Lacking chlorophyll, it is a parasite and completely dependent on a host plant for water and nutrients. An infestation of broomrape in sunflower fields can reduce yields by 50%. Sunflower is one of the main oil crops in China, and in one county, over 64% of a sunflower field covering more than 24,000 acres is currently infested.

Several strategies have been tested to stop the damage caused by broomrape, including chemical and cultural methods. Previous studies have shown the utility of using trap crops, which induce germination of the unwanted seed but do not allow for development and survival of the parasite thus causing "suicidal germination." However, no single method of controlling broomrape has yet been shown to be effective and feasible for small farms.

In a study published in the Jan.-Feb. issue of Crop Science, Yongqing Ma and a research team from Northwest A & F University in China attempted to control broomrape infestation by using corn as a trap crop. Corn was a favorable option since both sunflower and corn can be grown in the same areas of China. While corn cannot be parasitized by broomrape, the scientists found that a hybrid line of corn and its parental lines induced significant germination of broomrape seeds. They suggest that corn lines could be produced specifically to be used as a trap crop, thus controlling broomrape infestations and producing a forage crop for livestock feed.

... more about:
»Corn »crop »crop science »molecular genetic

To study the effect of several corn varieties on broomrape germination, the researchers tested both hybrid and inbred lines. They found that one hybrid and its parental lines consistently induced the highest germination rates. While none of the corn varieties tested was bred to be a trap crop for broomrape, by analyzing these successful lines, it may be possible to produce even more efficient varieties, the researchers say.

The research team sampled the corn in multiple ways looking at the effects of root extracts, shoot extracts, and soil samples from around the roots. Root extracts generally caused more germination than the shoot extracts. Researchers think that this is because the chemical most likely responsible for causing germination, strigolactone, is made in the roots of the corn plant.

Using the results of their study, the scientists believe that a breeding program could be developed to make corn varieties that are even better at inducing suicidal germination in broomrape. It would also be possible to determine how the chemical that induces germination is made by studying these corn varieties.

Finally, the authors note that the benefit of using corn as a trap crop extends beyond its effects on broomrape. If corn is successful, it can be harvested for livestock feed and other uses thus optimizing the effort and cost to plant it.

Yongqing Ma can be reached at mayongqing@ms.iswc.ac.cn

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.crops.org/publications/cs/abstracts/53/1/260.

Crop Science is the flagship journal of the Crop Science Society of America. Original research is peer-reviewed and published in this highly cited journal. It also contains invited review and interpretation articles and perspectives that offer insight and commentary on recent advances in crop science. For more information, visit www.crops.org/publications/cs

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

CSSA fosters the transfer of knowledge through an array of programs and services, including publications, meetings, career services, and science policy initiatives.

Yongqing Ma | EurekAlert!
Further information:
http://www.crops.org

Further reports about: Corn crop crop science molecular genetic

More articles from Agricultural and Forestry Science:

nachricht Climate change: Trade liberalization could buffer economic losses in agriculture
25.08.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht Fungal intruder ante portas!
19.08.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>