Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018

Neuroscientific and cognitive psychological research casts a fresh light on memory development in childhood and adolescence. The hippocampus plays a more important role than previously thought. Researchers from the Max Planck Institute for Human Development and Temple University present their latest findings in the journal Trends in Cognitive Sciences.

Parents know one of the paradoxes of human development well: Toddlers seem to acquire knowledge about their world effortlessly, but at the same time they often do not remember specific events. They learn that tigers have stripes, but forget their trip to the zoo—who they went with, what they ate, what they wore, and so on. Children’s better memory for the generalizable than for the specific persists, albeit in a weaker form, up until pre-school and even primary school age.


Differences in the maturation of the regions of the hippocampus may explain this developmental paradox. Researchers from the Max Planck Institute for Human Development in Berlin and Temple University in Philadelphia have collaborated to review these findings in an article in the journal Trends in Cognitive Sciences.

The hippocampus is located deep in the brain and plays an important role in processes of learning and memory. Different areas within it prioritize generalization versus details. “Generalizing first allows small children to get their bearings in the world,” says first author Attila Keresztes from the Max Planck Institute for Human Development.

“Building up stable notions of repeating events and language acquisition are part of the ability to generalize. On this basis, children become increasingly better at separating the specific from the general and at remembering details as well,“ adds Keresztes.

The processes enabling this developmental trajectory are called pattern completion and pattern separation. Pattern completion extracts the generalizable across different experiences, whereas pattern separation identifies the differences between events and thereby allows memory for details.

The Berlin team’s high-resolution brain imaging data show that the regions of the hippocampus responsible for pattern completion and pattern separation mature at different rates. The researchers regard this coordinated maturation of spezialized areas of the hippocampus as being the cause of the observed development trend from the general to the specific.

“Last year we realized that we had arrived at the same conclusions in independent studies. So we decided to write a position paper together with our Berlin colleagues,“ says Nora Newcombe, Professor at Temple University in Philadelphia. She regards the approach developed together as a pivotal reorientation in the study of human memory development.

So far, the assumption was that the hippocampus was more or less mature by the age of six years and further memory development was only dependent on the maturation of the neocortex, explains Nora Newcombe. Now it is clear that maturation of the hippocampus continues into adoslescence. “The textbooks need to be rewritten,“ says Newcombe.

The details of hippocampal maturation and its links with neocortical maturation will be examined in further experiments and longitudinal studies, using behavioral assessment, neuroimaging, and computer models of the interactions between pattern completion and pattern separation.

Originalpublikation:

Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., & Newcombe, N. S. (2018). Hippocampal maturation drives memory from generalization to specificity. Trends in Cognitive Sciences, 22, 676-686. https://doi.org/10.1016/j.tics.2018.05.004

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2018/07/from-the-general-to-the-specific...

Kerstin Skork | Max-Planck-Institut für Bildungsforschung

More articles from Science Education:

nachricht How Humans and Machines Navigate Complex Situations
19.11.2018 | Max-Planck-Institut für Bildungsforschung

nachricht A gene activated in infant and young brains determines learning capacity in adulthood
13.11.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>