Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Humans and Machines Navigate Complex Situations

19.11.2018

People intuitively find good solutions even in complex, unfamiliar situations. They learn quickly and are able to cope with an almost infinite number of options. A team of researchers have created a game to experimentally investigate how this is possible and found astonishing parallels to state-of-the-art machine algorithms. The results of the study have been published in Nature Human Behaviour.

Which career is right for me? Which pension scheme should I invest in? Which chess move should I make next? In many of the decisions we make, the number of possible actions is vast. Theoretically, we can only find out which option is best for us by trying out all the possibilities.


As that is clearly impossible, we have to either rely on tried-and-tested options or take risks in trying out new ones. In all our decisions, we tread an intuitive balance between these two poles — and often manage to find good solutions. The dilemma between exploring new opportunities and sticking to what we know is termed the “exploration-exploitation dilemma.”

It is of interest not only to psychologists, but also to computer scientists who program learning algorithms. They need to make sure that the algorithm balances two tasks: drawing on information that is known while also exploring new and unknown options — for example, when making personalized recommendations for customers in online shops.

But how exactly do people navigate situations with only a few known options against a vast set of unknown ones? And can machine learning algorithms handle these same computational challenges?

To investigate these questions, a team of researchers from the Max Planck Institute for Human Development, Harvard University, University College London, and the University of Surrey developed a series of experimental decision games. The games were played by 241 people, as well as by computers applying different models and algorithms.

In the online games, human and virtual players were presented with a grid of tiles. Each tile was worth a certain number of points; this reward was revealed only when the tile was clicked. Because the number of clicks available to each player was considerably smaller than the number of tiles, the players could only try out a limited number of options.

Initially, neither the humans nor the computers knew whether there was any pattern in the spatial arrangement of tiles in terms of whether neighboring tiles had similar point values. With time, they became aware of the spatial patterns behind the tiles and used this knowledge to develop a strategy that balanced clicking on neighboring tiles (exploitation) and opting for riskier, more distant tiles (exploration).

“People don’t have to experience every option in order to make good decisions. They are able to generalize from the basis of just a few known options and make predictions about where exploration may seem promising,” says Charley Wu, lead author and doctoral student at the Max Planck Institute for Human Development. “We also found that people are quite optimistic and curious, actively exploring the most unfamiliar options.”

The learning algorithms were also fairly successful — some more than others. In a direct comparison of human behavior and algorithms, the researchers found that combining two common algorithms enabled them to predict human behavior surprisingly well. The first algorithm predicted the spatial structure of the environment by generalization; the second simulated “curiosity” and tended to try out unknown tiles.

“The results of our study show how machine learning methods can help us gain a better understanding of human decision making. Conversely, psychological studies can help to improve the algorithms used in computer science — because in most areas human intelligence is still far superior to machine intelligence,” says Björn Meder, adjunct researcher at the Max Planck Institute for Human Development.


The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an interdisciplinary research institution dedicated to the study of human development and education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Originalpublikation:

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J.D., & Meder, B. (2018). Generalization guides human exploration in vast decision spaces. Nature Human Behaviour. doi.org/10.1038/s41562-018-0467-4

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2018/11/how-humans-and-machines-navigate...

Kerstin Skork | Max-Planck-Institut für Bildungsforschung

More articles from Science Education:

nachricht A gene activated in infant and young brains determines learning capacity in adulthood
13.11.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>