Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Humans and Machines Navigate Complex Situations

19.11.2018

People intuitively find good solutions even in complex, unfamiliar situations. They learn quickly and are able to cope with an almost infinite number of options. A team of researchers have created a game to experimentally investigate how this is possible and found astonishing parallels to state-of-the-art machine algorithms. The results of the study have been published in Nature Human Behaviour.

Which career is right for me? Which pension scheme should I invest in? Which chess move should I make next? In many of the decisions we make, the number of possible actions is vast. Theoretically, we can only find out which option is best for us by trying out all the possibilities.


As that is clearly impossible, we have to either rely on tried-and-tested options or take risks in trying out new ones. In all our decisions, we tread an intuitive balance between these two poles — and often manage to find good solutions. The dilemma between exploring new opportunities and sticking to what we know is termed the “exploration-exploitation dilemma.”

It is of interest not only to psychologists, but also to computer scientists who program learning algorithms. They need to make sure that the algorithm balances two tasks: drawing on information that is known while also exploring new and unknown options — for example, when making personalized recommendations for customers in online shops.

But how exactly do people navigate situations with only a few known options against a vast set of unknown ones? And can machine learning algorithms handle these same computational challenges?

To investigate these questions, a team of researchers from the Max Planck Institute for Human Development, Harvard University, University College London, and the University of Surrey developed a series of experimental decision games. The games were played by 241 people, as well as by computers applying different models and algorithms.

In the online games, human and virtual players were presented with a grid of tiles. Each tile was worth a certain number of points; this reward was revealed only when the tile was clicked. Because the number of clicks available to each player was considerably smaller than the number of tiles, the players could only try out a limited number of options.

Initially, neither the humans nor the computers knew whether there was any pattern in the spatial arrangement of tiles in terms of whether neighboring tiles had similar point values. With time, they became aware of the spatial patterns behind the tiles and used this knowledge to develop a strategy that balanced clicking on neighboring tiles (exploitation) and opting for riskier, more distant tiles (exploration).

“People don’t have to experience every option in order to make good decisions. They are able to generalize from the basis of just a few known options and make predictions about where exploration may seem promising,” says Charley Wu, lead author and doctoral student at the Max Planck Institute for Human Development. “We also found that people are quite optimistic and curious, actively exploring the most unfamiliar options.”

The learning algorithms were also fairly successful — some more than others. In a direct comparison of human behavior and algorithms, the researchers found that combining two common algorithms enabled them to predict human behavior surprisingly well. The first algorithm predicted the spatial structure of the environment by generalization; the second simulated “curiosity” and tended to try out unknown tiles.

“The results of our study show how machine learning methods can help us gain a better understanding of human decision making. Conversely, psychological studies can help to improve the algorithms used in computer science — because in most areas human intelligence is still far superior to machine intelligence,” says Björn Meder, adjunct researcher at the Max Planck Institute for Human Development.


The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an interdisciplinary research institution dedicated to the study of human development and education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Originalpublikation:

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J.D., & Meder, B. (2018). Generalization guides human exploration in vast decision spaces. Nature Human Behaviour. doi.org/10.1038/s41562-018-0467-4

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2018/11/how-humans-and-machines-navigate...

Kerstin Skork | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>