Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Humans and Machines Navigate Complex Situations

19.11.2018

People intuitively find good solutions even in complex, unfamiliar situations. They learn quickly and are able to cope with an almost infinite number of options. A team of researchers have created a game to experimentally investigate how this is possible and found astonishing parallels to state-of-the-art machine algorithms. The results of the study have been published in Nature Human Behaviour.

Which career is right for me? Which pension scheme should I invest in? Which chess move should I make next? In many of the decisions we make, the number of possible actions is vast. Theoretically, we can only find out which option is best for us by trying out all the possibilities.


As that is clearly impossible, we have to either rely on tried-and-tested options or take risks in trying out new ones. In all our decisions, we tread an intuitive balance between these two poles — and often manage to find good solutions. The dilemma between exploring new opportunities and sticking to what we know is termed the “exploration-exploitation dilemma.”

It is of interest not only to psychologists, but also to computer scientists who program learning algorithms. They need to make sure that the algorithm balances two tasks: drawing on information that is known while also exploring new and unknown options — for example, when making personalized recommendations for customers in online shops.

But how exactly do people navigate situations with only a few known options against a vast set of unknown ones? And can machine learning algorithms handle these same computational challenges?

To investigate these questions, a team of researchers from the Max Planck Institute for Human Development, Harvard University, University College London, and the University of Surrey developed a series of experimental decision games. The games were played by 241 people, as well as by computers applying different models and algorithms.

In the online games, human and virtual players were presented with a grid of tiles. Each tile was worth a certain number of points; this reward was revealed only when the tile was clicked. Because the number of clicks available to each player was considerably smaller than the number of tiles, the players could only try out a limited number of options.

Initially, neither the humans nor the computers knew whether there was any pattern in the spatial arrangement of tiles in terms of whether neighboring tiles had similar point values. With time, they became aware of the spatial patterns behind the tiles and used this knowledge to develop a strategy that balanced clicking on neighboring tiles (exploitation) and opting for riskier, more distant tiles (exploration).

“People don’t have to experience every option in order to make good decisions. They are able to generalize from the basis of just a few known options and make predictions about where exploration may seem promising,” says Charley Wu, lead author and doctoral student at the Max Planck Institute for Human Development. “We also found that people are quite optimistic and curious, actively exploring the most unfamiliar options.”

The learning algorithms were also fairly successful — some more than others. In a direct comparison of human behavior and algorithms, the researchers found that combining two common algorithms enabled them to predict human behavior surprisingly well. The first algorithm predicted the spatial structure of the environment by generalization; the second simulated “curiosity” and tended to try out unknown tiles.

“The results of our study show how machine learning methods can help us gain a better understanding of human decision making. Conversely, psychological studies can help to improve the algorithms used in computer science — because in most areas human intelligence is still far superior to machine intelligence,” says Björn Meder, adjunct researcher at the Max Planck Institute for Human Development.


The Max Planck Institute for Human Development in Berlin was founded in 1963. It is an interdisciplinary research institution dedicated to the study of human development and education. The Institute belongs to the Max Planck Society for the Advancement of Science, one of the leading organizations for basic research in Europe.

Originalpublikation:

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J.D., & Meder, B. (2018). Generalization guides human exploration in vast decision spaces. Nature Human Behaviour. doi.org/10.1038/s41562-018-0467-4

Weitere Informationen:

https://www.mpib-berlin.mpg.de/en/media/2018/11/how-humans-and-machines-navigate...

Kerstin Skork | Max-Planck-Institut für Bildungsforschung

More articles from Science Education:

nachricht A gene activated in infant and young brains determines learning capacity in adulthood
13.11.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht The Maturation Pattern of the Hippocampus Drives Human Memory Deve
23.07.2018 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>