Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Build New Microscope to Study Electron Spin

23.06.2004


Current electronic technologies can’t create smaller computers and other devices because they are reaching physical limitations, so University of Arkansas scientists seek to harness an electron’s spin to create tiny machines with large memories. To do this, they have built a microscope that may allow them to be the first researchers to measure the properties of electron spin injection in conducting materials.

Paul Thibado, associate professor of physics, won a $370,000 grant from the National Science Foundation to measure the properties of a spin-based transistor using a customized, two-tip Scanning Tunneling Microscope (STM) system. This work builds on a previous NSF grant of $760,000, which was used to create the customized STM.

Electrons have spin in addition to charge, but in the past this property has been little used or studied. By understanding and using the different states achieved when an electron’s spin rotates, researchers could potentially increase information storage a million fold. This would allow vast quantites of information to be stored in a space the size of a sugar cube or transmitted from one tiny device to another in the blink of an eye.



Today’s transistors store information by using two different states to save data or create words on the computer. Each bit in a given piece of information—a word or a computer program—can either be “on” or “off,” meaning that the possibilities are based on two, or binary logic. However, the different states created when an electron’s spin rotates could allow researchers to increase that base number from two to 10. This would create massive information storage and transmission capabilities.

Researchers currently use STMs to inject electrons of a certain spin into a conducting material. However, they have not been able to study what happens to the electrons as they pass through the material because they would need a second STM to create a transistor, a miniature electronic switch used to power televisions, cars, radios, home appliances and computers. A traditional transistor consists of a source, a drain and a gate. When an electric field is placed on the gate, current moves from the source to the drain. Placing two STM tips next to one another won’t work—the tips remain too far apart to create a transistor.

Thibado and his colleagues proposed building a different kind of instrument, one with two STMs placed at right angles to one another. This allows the tips to get close enough—about 10 nanometers apart—to create an effective detection device. Thibado and his colleagues will use one tip to inject electrons of a certain spin into a surface, while the other acts as a detection device, reading the actual spin of the injected electrons. By applying a magnetic field, the researchers can then change the electrons’ spins, creating a field-effect transistor.

The researchers will use computer-operated nano-positioning systems to move the STM tips with nanoscale precision.

“With this instrument, we’re going to open up a whole new research area where people can study the properties of spin,” Thibado said.

First, however, the researchers must learn more about how spin works, and Thibado’s new equipment will allow that to happen. The UA team will use the modified instruments to measure the current and voltage properties of a spin-dependent transistor, examine the characteristics of the transistor at different temperatures and change the distance between the two STMs to determine the device’s effectiveness at various distances. They also will use different materials on the tip of the STMs to determine how they affect the transistor’s properties.

| newswise
Further information:
http://www.uark.edu

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>