Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia/UNM self-assembly process forms durable nanocrystal arrays and independent nanocrystals

27.04.2004


NOW, SIT UP: Jeff Brinker (left) and Hongyou Fan observe satisfactory fluorescence by their well-trained nanocrystals in water solution. The dark vial holds gold nanocrystals; the orange and green are semiconductor nanocrystals. (Photo by Randy Montoya)


Top image: ordered gold nanocrystal packed inside silica. Electron diffraction pattern (left corner image) and high-resolution image (right corner) confirmed the nanostructure and gold nanocrystals. Bottom image: self-assembled, well-shaped gold nanocrystal/silica arrays.


Possible uses include biological labeling, laser light, catalysts, memory storage, and relief for physicists

A wish list for nanotechnologists might consist of a simple, inexpensive means - actually, any means at all - of self-assembling nanocrystals into robust orderly arrangements, like soup cans on a shelf or bricks in a wall, each separated from the next by an insulating layer of silicon dioxide.

The silica casing could be linked to compatible semiconductor devices. The trapped nanocrystals might function as a laser, their frequency dependent on their size, or as a very fine catalyst with unusually large surface area, or perhaps a memory device tunable by particle size and composition.



Or perhaps the technologist might want to stop nanocrystals from clumping. Agglomeration prevents them from being used as light-emitting tagging mechanisms to track cancer cells in the body and from being used in light-emitting devices needed for solid state lighting.

In this week’s journal Science, researchers at the National Nuclear Security Administration’s Sandia National Laboratories and the University of New Mexico describe a simple, commercially feasible method for doing both these things.

"The paper overcomes barriers to using nanocrystals routinely," said Jeff Brinker, Sandia Fellow and UNM chemical engineering professor, who with Sandia’s Hongyou Fan led the self-assembling effort. "The question in nanotechnology isn’t ’where’s the beef,’ it’s ’where’s the connectors’? How does one make connections from the macroscale to the nanoscale? This question lies at the heart of nanotechnology."

The self-assembly approach developed by the SNL/UNM teams allows nanocrystal arrays to be integrated into devices using standard microelectronic processing techniques, bridging huge gaps in scale.

Said IBM staff researcher Chuck Black at T. J. Watson Research Center in Yorktown Heights, NY, "One thing that’s nice is that these materials are hard materials. Often they come with an organic surfactant layer that makes it difficult to process materials, like a kind of grease. This material is embedded in oxide. It sounds like a neat thing and a new approach." The Sandia/UNM approach scrubs the surfactants with an ozone compound.

"Also, quantum dots can be important for biolabeling and biosensing," said Fan, who initiated the effort to use the nanocrystals for those purposes. "The beauty of our approach is that it makes these quantum dots both water-soluble and biocompatible, two essential qualities if we want to use them for in vivo imaging. The functional organic groups on the quantum dots can link with a variety of peptides, proteins, DNA, antibodies, etc. so that the dots can bind to and help locate targets like cancer cells, a critical issue in biomedicine."

Sandia has applied for a patent on this approach, which should aid attempts at several major universities to identify individual cancer cells before they increase in number.

(Researchers have found that at the nanoscopic realm, changing merely the size of a material changes the frequency it emits when ’pumped’ by outside energy; thus, quantum dots of particular sizes and material will emit at predictable frequencies, which makes them useful adjuncts when bound to molecules created to bind to particular cancer molecules.)

The process uses a simple surfactant (similar to dishwashing soap) to surround the nanocrystals - in this case, made of gold - to make them water soluble. Further processing involving silica causes the gold nanocrystals to arrange themselves within a silica matrix in a lattice - a kind of artificial solid with properties that can be adjusted through control of nanocrystal composition, diameter, properties of the surfactant, and/or stabilizing ligands used in formation of the water soluble nanocrystals.

The robust 3-D solids, which are stable indefinitely, demonstrate the incorporation of nanocrystalline arrays into device architectures.

A further use allows physicists to go beyond modeling to determine how current scales with voltage in nanodevices. "Before," says Brinker, "there was no way to make precisely ordered 3-D nanocrystalline solids, integrate them in devices, and characterize their behavior. There was no theoretical model. How does the current decide which way to hop between crystals?"

The new material can be used as an artificial solid to test out theories. "It should be a dream for physicists; they don’t just have to model anymore," said Brinker.

A kind of choreographed transmission possibility exists with the so-called "coulomb blockade," he said: No current is passed at low voltages because each crystal is separated by a thin (several nanometer thick) layer of silica dioxide, creating an insulator between the stored charges. Each nanocrystal charges separately. "This could be configured into a flash memory," said Brinker, "with a huge number of charges stored in an array of nodes."

Researchers at UNM’s Center for High Technology Materials performed experiments to establish the current/voltage scaling characteristics of the gold/silica arrays as a function of temperature. Sandia researcher Tim Boyle made and provided nanocrystal semiconductor (cadmium selinide) quantum dots.

Neal Singer | Sandia!
Further information:
http://www.sandia.gov/news-center/news-releases/2004/micro-nano/nanotoolcase.html

More articles from Process Engineering:

nachricht Copper oxide photocathodes: laser experiment reveals location of efficiency loss
10.05.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht NIST research sparks new insights on laser welding
02.05.2019 | National Institute of Standards and Technology (NIST)

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>