Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishy sixth sense could help robots navigate the oceans

24.06.2002


Taking their cue from fish, scientists in the US have built a navigational aid that will help robots and remote sensors find their way around the world`s vast oceans. The team describes its research today in the Institute of Physics publication Journal of Micromechanics and Microengineering.



Fish and many amphibian animals find their way through even the murkiest of waters, navigate raging torrents and spot obstacles, predators and prey using a sensory organ known as the lateral line system. Sometimes known as the fish`s sixth sense, the lateral line is a system of thousands of tiny hair cells that run the length of the fish`s body. The lateral line responds to fluid flow around the fish and allows it to detect obstacles and sense the movement of water even in complete darkness.

Now, electrical engineer Chang Liu, entomologist Fred Delcomyn and their colleagues at the University of Illinois at Urbana-Champaign, USA have developed an artificial lateral line that could give underwater vehicles and robots a sixth sense. Robots equipped with the lateral line system will be able to navigate and feel in water.


The artificial lateral line was built by micromachining a sliver of silicon so that three-dimensional hairlike structures are formed on its surface. The hair cells in a fish`s lateral line are each connected to a nerve cell and, by analogy, Liu and Delcomyn have connected each of their silicon hairs via a micro-hinge to an electronic sensor. When the artificial lateral line comes into contact with moving water, the silicon hairs are bent slightly depending on the rate of flow and the sensors detect the degree and direction of bending. A computer then interprets this movement to build up a picture of the flowing water, much as does the fish`s brain.

The artificial lateral line the researchers are developing has 100 silicon hairs per square millimetre. `This arrayed sensor will provide a unique fluid mechanics measurement tool,` says Liu, `We are collaborating with marine researchers at Massachusetts Institute of Technology to apply the sensors to autonomous underwater vehicles.` He adds that, `The lateral line sensor might also help marine biologists to understand better the functions of biological lateral line sensors.`

Dianne Stilwell | alfa

More articles from Process Engineering:

nachricht Design treatment of advanced metals producing better sculpting
08.03.2019 | Purdue University

nachricht Laser Processes for Multi-Functional Composites
18.02.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>