Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching Schrödinger's cat die (or come to life)

31.07.2014

Steering quantum evolution & using probes to conduct continuous error correction in quantum computers

One of the famous examples of the weirdness of quantum mechanics is the paradox of Schrödinger's cat.

Quantum Trajectories

Continuous monitoring of a quantum system can direct the quantum state along a random path. This three-dimensional map shows how scientists tracked the transition between two qubit states many times to determine the optimal path.

Credit: Irfan Siddiqi, UC Berkeley

If you put a cat inside an opaque box and make his life dependent on a random event, when does the cat die? When the random event occurs, or when you open the box?

Though common sense suggests the former, quantum mechanics – or at least the most common "Copenhagen" interpretation enunciated by Danish physicist Neils Bohr in the 1920s – says it's the latter. Someone has to observe the result before it becomes final. Until then, paradoxically, the cat is both dead and alive at the same time.

University of California, Berkeley, physicists have for the first time showed that, in fact, it's possible to follow the metaphorical cat through the whole process, whether he lives or dies in the end.

"Gently recording the cat's paw prints both makes it die, or come to life, as the case may be, and allows us to reconstruct its life history," said Irfan Siddiqi, UC Berkeley associate professor of physics, who is senior author of a cover article describing the result in the July 31 issue of the journal Nature.

The Schrödinger's cat paradox is a critical issue in quantum computers, where the input is an entanglement of states – like the cat's entangled life and death– yet the answer to whether the animal is dead or alive has to be definite.

"To Bohr and others, the process was instantaneous – when you opened the box, the entangled system collapsed into a definite, classical state. This postulate stirred debate in quantum mechanics," Siddiqi said. "But real-time tracking of a quantum system shows that it's a continuous process, and that we can constantly extract information from the system as it goes from quantum to classical. This level of detail was never considered accessible by the original founders of quantum theory."

For quantum computers, this would allow continuous error correction. The real world, everything from light and heat to vibration, can knock a quantum system out of its quantum state into a real-world, so-called classical state, like opening the box to look at the cat and forcing it to be either dead or alive. A big question regarding quantum computers, Siddiqi said, is whether you can extract information without destroying the quantum system entirely.

"This gets around that fundamental problem in a very natural way," he said. "We can continuously probe a system very gently to get a little bit of information and continuously correct it, nudging it back into line, toward the ultimate goal."

Being two opposing things at the same time

In the world of quantum physics, a system can be in two superposed states at the same time, as long as no one is observing. An observation perturbs the system and forces it into one or the other. Physicists say that the original entangled wave functions collapsed into a classical state.

In the past 10 years, theorists such as Andrew N. Jordan, professor of physics at the University of Rochester and coauthor of the Nature paper, have developed theories predicting the most likely way in which a quantum system will collapse.

"The Rochester team developed new mathematics to predict the most likely path with high accuracy, in the same way one would use Newtown's equations to predict the least cumbersome path of a ball rolling down a mountain," Siddiqi said. "The implications are significant, as now we can design control sequences to steer a system along a certain trajectory. For example, in chemistry one could use this to prefer certain products of a reaction over others."

Lead researcher Steve Weber, a graduate student in Siddiqi's group, and Siddiqi's former postdoctoral fellow Kater Murch, now an assistant professor of physics at Washington University in St. Louis, proved Jordan correct. They measured the trajectory of the wave function of a quantum circuit – a qubit, analogous to the bit in a normal computer – as it changed. The circuit, a superconducting pendulum, could be in two different energy states and was coupled to a second circuit to read out the final voltage, corresponding to the pendulum's frequency.

"If you did this experiment many, many times, measuring the road the system took each time and the states it went through, we could determine what the most likely path is," Siddiqi said. "Then we could design a control sequence to take the road we want to take for a given quantum evolution."

If you probed a chemical reaction in detail, for example, you could find the most likely path the reaction would take and design a way to steer the reaction to the products you want, not the most likely, Siddiqi said.

"The experiment demonstrates that, for any choice of final quantum state, the most likely or 'optimal path' connecting them in a given time can be found and predicted," Jordan said. "This verifies the theory and opens the way for active quantum control techniques."

###

The work was supported in part by the Office of Naval Research and the Office of the Director of National Intelligence (ODNI) of the Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

Robert Sanders | Eurek Alert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>