Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets of radio waves that race along magnetic field lines.


Scientists at the University of California, Los Angeles present research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets of radio waves that race along magnetic field lines. Appearing in the Physics of Plasmas, the study provides new insights into the nature of whistlers and space plasmas and could one day aid in the development of practical plasma technologies with magnetic fields, including spacecraft thrusters that use charged particles as fuel. This image shows the growth of a whistler mode with circular phase front and cross-field propagation.

Credit: Reiner Stenzel and Manuel Urrutia

This first-of-its-kind study, appearing in the Physics of Plasmas, from AIP Publishing, provides new insights into the nature of whistlers and space plasmas -- regions of energized particles trapped by Earth's magnetic fields. These studies could one day aid in the development of practical plasma technologies with magnetic fields, including spacecraft thrusters that use charged particles as fuel.

"We have discovered new effects of these so-called whistler waves," said Reiner Stenzel, an author on the paper. "These new laboratory studies will help expand our knowledge on this intriguing electromagnetic phenomenon and suggest new applications and possible inventions."

Whistler waves were first detected in the early 1900s. They were found to come from lightning interacting with Earth's magnetic fields. As they traveled through Earth's ionosphere and magnetosphere, whistlers with low tones propagate more slowly than the higher frequency whistlers. As a result, simple radio receivers were used to listen to the radio waves, and the falling pitch sounded like a whistle.

Stenzel and his co-author, Manuel Urrutia, studied the growth, propagation and decay of whistler waves in nonuniform magnetic fields in their laboratory. They discovered that these waves behaved differently than predicted by an 80-year-old theory.

These laboratory studies involved creating whistler waves with magnetic antennas inside a plasma-filled chamber. The researchers then studied the behavior and propagation of these waves in 3D space with a movable probe. This enabled the team to study how these waves propagate through 3D space as a function of time. They could also study the waves under a variety of conditions, including how they behave when exposed to both straight and circular magnetic field lines and magnetic null points -- regions where there was no field at all.

"Our laboratory experiments reveal three-dimensional wave properties in ways that simply cannot be obtained from observations in space," said Stenzel. "This enabled us to study continuous waves as well as the growth and decay of waves with amazing detail. This produced unexpected discoveries of wave reflections and of cylindrical whistler modes."

Whistler waves are considered a form of helicon waves, or low-frequency electromagnetic waves that travel in a corkscrewlike, or helixlike, pattern. When helicons interact with plasmas, they exert a pressure and torque on the electrons.

The researchers believe that better understanding these properties could someday lead to the design of plasma thrusters for space vehicles. These thrusters use electricity to propel plasma to extremely high speeds, faster than a chemical rocket.

###

The article, "Whistler modes in highly nonuniform magnetic fields. I. Propagation in two-dimensions," is authored by Reiner Stenzel and Manuel Urrutia. The article appeared Physics of Plasmas August 14, 2018, (DOI: 10.1063/1.5030703) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5030703.

ABOUT THE JOURNAL

Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas. See http://pop.aip.org.

Media Contact

Rhys Leahy
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Rhys Leahy | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5030703

Further reports about: 3D magnetic field magnetic fields plasma physics radio waves space vehicles waves

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>