Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets of radio waves that race along magnetic field lines.


Scientists at the University of California, Los Angeles present research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets of radio waves that race along magnetic field lines. Appearing in the Physics of Plasmas, the study provides new insights into the nature of whistlers and space plasmas and could one day aid in the development of practical plasma technologies with magnetic fields, including spacecraft thrusters that use charged particles as fuel. This image shows the growth of a whistler mode with circular phase front and cross-field propagation.

Credit: Reiner Stenzel and Manuel Urrutia

This first-of-its-kind study, appearing in the Physics of Plasmas, from AIP Publishing, provides new insights into the nature of whistlers and space plasmas -- regions of energized particles trapped by Earth's magnetic fields. These studies could one day aid in the development of practical plasma technologies with magnetic fields, including spacecraft thrusters that use charged particles as fuel.

"We have discovered new effects of these so-called whistler waves," said Reiner Stenzel, an author on the paper. "These new laboratory studies will help expand our knowledge on this intriguing electromagnetic phenomenon and suggest new applications and possible inventions."

Whistler waves were first detected in the early 1900s. They were found to come from lightning interacting with Earth's magnetic fields. As they traveled through Earth's ionosphere and magnetosphere, whistlers with low tones propagate more slowly than the higher frequency whistlers. As a result, simple radio receivers were used to listen to the radio waves, and the falling pitch sounded like a whistle.

Stenzel and his co-author, Manuel Urrutia, studied the growth, propagation and decay of whistler waves in nonuniform magnetic fields in their laboratory. They discovered that these waves behaved differently than predicted by an 80-year-old theory.

These laboratory studies involved creating whistler waves with magnetic antennas inside a plasma-filled chamber. The researchers then studied the behavior and propagation of these waves in 3D space with a movable probe. This enabled the team to study how these waves propagate through 3D space as a function of time. They could also study the waves under a variety of conditions, including how they behave when exposed to both straight and circular magnetic field lines and magnetic null points -- regions where there was no field at all.

"Our laboratory experiments reveal three-dimensional wave properties in ways that simply cannot be obtained from observations in space," said Stenzel. "This enabled us to study continuous waves as well as the growth and decay of waves with amazing detail. This produced unexpected discoveries of wave reflections and of cylindrical whistler modes."

Whistler waves are considered a form of helicon waves, or low-frequency electromagnetic waves that travel in a corkscrewlike, or helixlike, pattern. When helicons interact with plasmas, they exert a pressure and torque on the electrons.

The researchers believe that better understanding these properties could someday lead to the design of plasma thrusters for space vehicles. These thrusters use electricity to propel plasma to extremely high speeds, faster than a chemical rocket.

###

The article, "Whistler modes in highly nonuniform magnetic fields. I. Propagation in two-dimensions," is authored by Reiner Stenzel and Manuel Urrutia. The article appeared Physics of Plasmas August 14, 2018, (DOI: 10.1063/1.5030703) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5030703.

ABOUT THE JOURNAL

Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas. See http://pop.aip.org.

Media Contact

Rhys Leahy
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Rhys Leahy | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5030703

Further reports about: 3D magnetic field magnetic fields plasma physics radio waves space vehicles waves

More articles from Physics and Astronomy:

nachricht Astrophysicists measure precise rotation pattern of sun-like stars for the first time
21.09.2018 | NYU Abu Dhabi

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>