Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling intricate interactions, 1 molecule at a time

13.08.2012
In key step towards design of better organic electronic devices, Columbia engineering team makes first single-molecule measurement of Van Der Waals interactions at a metal-organic interface

A team of researchers at Columbia Engineering, led by Applied Physics and Applied Mathematics Associate Professor Latha Venkataraman and in collaboration with Mark Hybertsen from the Center for Functional Nanomaterials at the U.S. Department of Energy's Brookhaven National Laboratory, has succeeded in performing the first quantitative characterization of van der Waals interactions at metal/organic interfaces at the single-molecule level.


This is a model structure illustrating the bonding of bipyridine to the rough gold surface through direct nitrogen-gold chemical bonding and indirect van der Waals bonding.
Credit: Columbia Engineering

In a study published online August 12 in the Advance Online Publication on Nature Materials's website , the team has shown the existence of two distinct binding regimes in gold-molecule-gold single-molecule junctions, using molecules containing nitrogen atoms at their extremities that are attracted to gold surfaces. While one binding mechanism is characterized by chemical interactions between the specific nitrogen and gold atoms, the other is dominated by van der Waals interactions between the molecule and the gold surface.

"A detailed understanding of van der Waals interactions is a key step towards design of organic electronic devices," says Sriharsha Aradhya, the study's lead author and a Ph.D. candidate working with Venkataraman. "Apart from the fundamental importance of these measurements, we are also excited about its applications. Understanding the effects of van der Waals interactions is tremendously important for creating and optimizing devices with organic building-blocks".

"Many proposals for future photovoltaic and flexible electronic devices are based on organic molecules because they are cost-effective," Venkataraman adds, "and scientists need to have a deeper understanding of these van der Waals interactions. Our work opens up the possibility of measuring and characterizing the strength of interaction between a variety of molecules and metallic surfaces a single-molecule at a time."

The forces of attraction between atoms and molecules come in different varieties and strengths, Aradhya explains. One of the most ubiquitous forms of attraction in nature is the van der Waals force. In contrast to specific interactions arising from bonding between atoms, van der Waals interactions represent non-specific interactions with subtler underpinnings. While originally intended to explain the apparent continuity between gaseous and liquid phases of matter, these forces have come to be recognized as an important aspect in answering such diverse questions as how does water boil inside a pressure cooker? How are geckos able to climb walls vertically? Or how can you control the organization of molecules for an organic LED smartphone display screen?

As devices like the latter become increasingly common, there has been a good deal of renewed interest in van der Waals interactions, known to lie at the heart of the structure and functionality in such devices. These interactions between organic molecules and metallic surfaces are central to a diverse range of phenomena such as catalysis of reactions, molecular electronic architectures, and molecular self-assembly in nature and engineered material. However, van der Waals interactions remain challenging to characterize directly at the fundamental, single-molecule level both in experiments and in theoretical calculations.

For this Columbia Engineering study, the researchers used their custom-built conducting atomic force microscope to make simultaneous measurements of force and conductance in single-molecule junctions. They combined their measurements with theoretical calculations and simulations, carried out in collaboration with Hybertsen at Brookhaven, in order to provide a unique quantitative measurement of the relative importance of specific and non-specific interactions at the single-molecule level, in a regime where both are comparable.

"In simple terms, conductance of the junction acts as a fingerprint of the structure," explains Aradhya. "At the same time, the measured force – especially the force needed to rupture the junction – can be used to deduce its mechanical properties."

While similar studies have been reported by a few research groups around the world, such precise studies have typically required the measurements to be carried out at very low temperatures and in high vacuum. Venkataraman's and Aradhya's experimental setup was optimized for very high sensitivities even at room temperature and ambient conditions. This allowed the team to perform thousands of individual single-molecule measurements, resulting in statistically robust results. The researchers then performed extensive density functional theory calculations to help them understand the mechanisms underlying their measurements.

"Taken together, this unique combination of our state-of-the-art experimental and theoretical efforts has resulted in this major progress in quantifying van der Waals interactions," Venkataraman says.

Future research, she adds, will include trying to control the interplay of van der Waals non-specific interactions with chemical modifications, in order to "achieve interesting functionality at the single-molecule level, which is an active area of research in our lab."

"We're very excited about this," she says, "as our efforts towards developing a reliable way to simultaneously measure force and conductance are yielding exciting new opportunities to relate structure, mechanics, and electronics at the single-molecule level."

As Hybertsen notes, "The development and validation of efficient theoretical models for the van der Waals interaction is still in its nascent stage. We expect that our work will also have an impact on this theoretical effort underway among many research groups around the globe to develop accurate treatment of van der Waals interactions."

The experiments were conceived by Aradhya and Venkataraman. The experimental tools and large dataset analysis techniques necessary for this study were developed by Aradhya, along with Michael Frei, a recent graduate of Venkataraman's lab. The modeling of the interactions and the calculations were conceived and executed by Hybertsen at Brookhaven.

This research was funded primarily by NSF (Career Award CHE-07-44185) and the Packard Foundation. The computational efforts at the Center for Functional Nanomaterials at Brookhaven National Laboratory were supported by the U.S. Department of Energy's Office of Science.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. http://www.engineering.columbia.edu/

Center for Functional Nanomaterials at Brookhaven National Laboratory

The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of five DOE funded Nanoscience Research Centers Brookhaven National Laboratory is one of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>