Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Toronto physicists harness neglected properties of light


Technique could help increase resolution of microscopes and telescopes

University of Toronto (U of T) researchers have demonstrated a way to increase the resolution of microscopes and telescopes beyond long-accepted limitations by tapping into previously neglected properties of light. The method allows observers to distinguish very small or distant objects that are so close together they normally meld into a single blur.

University of Toronto physics researchers Edwin (Weng Kian) Tham and Hugo Ferretti prepare to run a test in their quest to beat Rayleigh's Curse, by tapping into previously neglected properties of light.

Credit: Diana Tyszko/University of Toronto

Telescopes and microscopes are great for observing lone subjects. Scientists can precisely detect and measure a single distant star. The longer they observe, the more refined their data becomes.

But objects like binary stars don't work the same way.

... more about:
»QUANTUM »Telescopes »waves

That's because even the best telescopes are subject to laws of physics that cause light to spread out or "diffract." A sharp pinpoint becomes an ever-so-slightly blurry dot. If two stars are so close together that their blurs overlap, no amount of observation can separate them out. Their individual information is irrevocably lost.

More than 100 years ago, British physicist John William Strutt - better known as Lord Rayleigh - established the minimum distance between objects necessary for a telescope to pick out each individually. The "Rayleigh Criterion" has stood as an inherent limitation of the field of optics ever since.

Telescopes, though, only register light's "intensity" or brightness. Light has other properties that now appear to allow one to circumvent the Rayleigh Criterion.

"To beat Rayleigh's curse, you have to do something clever," says Professor Aephraim Steinberg, a physicist at U of T's Centre for Quantum Information and Quantum Control, and Senior Fellow in the Quantum Information Science program at the Canadian Institute for Advanced Research. He's the lead author of a paper published today in the journal Physical Review Letters.

Some of these clever ideas were recognized with the 2014 Nobel Prize in Chemistry, notes Steinberg, but those methods all still rely on intensity only, limiting the situations in which they can be applied. "We measured another property of light called 'phase.' And phase gives you just as much information about sources that are very close together as it does those with large separations."

Light travels in waves, and all waves have a phase. Phase refers to the location of a wave's crests and troughs. Even when a pair of close-together light sources blurs into a single blob, information about their individual wave phases remains intact. You just have to know how to look for it. This realization was published by National University of Singapore researchers Mankei Tsang, Ranjith Nair, and Xiao-Ming Lu last year in Physical Review X, and Steinberg's and three other experimental groups immediately set about devising a variety of ways to put it into practice.

"We tried to come up with the simplest thing you could possibly do," Steinberg says. "To play with the phase, you have to slow a wave down, and light is actually easy to slow down."

His team, including PhD students Edwin (Weng Kian) Tham and Huge Ferretti, split test images in half. Light from each half passes through glass of a different thickness, which slows the waves for different amounts of time, changing their respective phases. When the beams recombine, they create distinct interference patterns that tell the researchers whether the original image contained one object or two - at resolutions well beyond the Rayleigh Criterion.

So far, Steinberg's team has tested the method only in artificial situations involving highly restrictive parameters.

"I want to be cautious - these are early stages," he says. "In our laboratory experiments, we knew we just had one spot or two, and we could assume they had the same intensity. That's not necessarily the case in the real world. But people are already taking these ideas and looking at what happens when you relax those assumptions."

The advance has potential applications both in observing the cosmos, and also in microscopy, where the method can be used to study bonded molecules and other tiny, tight-packed structures.

Regardless of how much phase measurements ultimately improve imaging resolution, Steinberg says the experiment's true value is in shaking up physicists' concept of "where information actually is."

Steinberg's "day job" is in quantum physics - this experiment was a departure for him. He says work in the quantum realm provided key philosophical insights about information itself that helped him beat Rayleigh's Curse.

"When we measure quantum states, you have something called the Uncertainty Principle, which says you can look at position or velocity, but not both. You have to choose what you measure. Now we're learning that imaging is more like quantum mechanics than we realized," he says. "When you only measure intensity, you've made a choice and you've thrown out information. What you learn depends on where you look."


Support for the research was provided by by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and Northrop-Grumman Aerospace Systems NG Next.

Note to media: The study "Beating Rayleigh's Curse by Imaging Using Phase Information" can be found at


Aephraim Steinberg
Department of Physics
University of Toronto
+1 416 978 0713

Edwin (Weng Kian) Tham
Department of Physics
University of Toronto
+1 416 946 3162

Hugo Ferretti
Department of Physics
University of Toronto

Sean Bettam
Communications Officer, Faculty of Arts & Science
University of Toronto
+1 416 946 7950 

Sean Bettam | EurekAlert!

Further reports about: QUANTUM Telescopes waves

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>