Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultraclean metal-like conductivity in semimetallic WP2


Ultraclean metals show high conductivity with a high number of charge carriers, whereas semiconductors and semimetals with low charge carriers normally show a low conductivity. This scenario in semimetals can be changed if one can protect the carriers from scattering.

Left panel: A comparison of MR (2 K, 9 T) and conductivity (2 K, 0 T) of some well-known metals and semimetals. Metals with high conductivity have smaller MR and semimetals with smaller conductivities have larger MR. WP2 and MoP2 exhibit both very large conductivity as well as extremely high MR together. Right panel: The neighbouring Weyl points W1 and W2 in WP2 and MoP2 are of the same chirality making their annihilation with each other improbable. Upper panel: Schematic of the effect of hydrodynamics on carrier scattering.

© MPI CPfS / Nitesh Kumar

In a recent study, scientists from the Max Planck Institute for Chemical Physics of Solids in Dresden, in collaboration with High Field Magnet Laboratory (HFML-EMFL), Netherlands; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Paul Scherrer Institute, Switzerland show extremely large conductivity in a semimetal, WP2.

The conductivity of ~ 3 x 108 W-1cm-1in WP2 at 2 K is comparable to highly conducting metals like potassium and copper of the similar purity.

The authors identified two major reasons for diminished scattering events in WP2 and the sister compound MoP2. First, these compounds contain robust Weyl points (difficult to annihilate), which means that backscattering events of charge carriers are less possible compared to conventional metals.

Second, the hydrodynamic effect at low temperatures ensures that the charge carriers are invisible to certain lattice defects and pass through them without getting scattered because they travel rather like a fluid.

The consequence in WP2 is a very large carrier mobility (4 x 106 cm2/Vs) and spectacular sub-millimetre mean free path (~ 106 unit cells of WP2). The mean free path is the average distance an electron can travel without getting scattered.

Because of the semimetallic nature of WP2 and MoP2, number of electrons and holes are almost equal, which additionally provide for a highly sensitive resistivity (or conductivity) towards the applied magnetic field which is otherwise not possible in a conventional metal with a single type of carriers.

Hence, we observe a record breaking conductivity and magnetoresistance (change in resistivity, 200 million % at 63 T field) present together in a compound, WP2.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS ( is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.


 Claudia Felser
Telefon: +49 351 4646-3000
Fax: +49 351 4646-3002
Nitesh Kumar
Post-doctoral research scientist
Telefon: +49 351 4646-3419

Topological Materials



Ingrid Rothe
Director's secretary
Telefon: +49 351 4646-3001
Fax: +49 351 4646-3002


1. Nitesh Kumar, Yan Sun, Nan Xu, Kaustuv Manna, Mengyu Yao, Vicky Süss, Inge Leermakers, Olga Young, Tobias Förster, Marcus Schmidt, Horst Borrmann, Binghai Yan, Uli Zeitler, Ming Shi, Claudia Felser, and Chandra Shekhar, "Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2," Nature Communications 8 (1), 1-8 (2017).

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe
Further information:

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>