Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

09.02.2018

Laser experiments verify 'turbulent dynamo' theory of how cosmic magnetic fields are created

The universe is highly magnetic, with everything from stars to planets to galaxies producing their own magnetic fields. Astrophysicists have long puzzled over these surprisingly strong and long-lived fields, with theories and simulations seeking a mechanism that explains their generation.


This is a 3-D radiation magneto-hydrodynamic FLASH simulation of the experiment, performed on the Mira supercomputer at Argonne National Laboratory. The values demonstrate strong amplification of the seed magnetic fields by turbulent dynamo.

Credit: Petros Tzeferacos/University of Chicago

Using one of the world's most powerful laser facilities, a team led by University of Chicago scientists experimentally confirmed one of the most popular theories for cosmic magnetic field generation: the turbulent dynamo. By creating a hot turbulent plasma the size of a penny, that lasts a few billionths of a second, the researchers recorded how the turbulent motions can amplify a weak magnetic field to the strengths of those observed in our sun, distant stars, and galaxies.

The paper, published this week in Nature Communications, is the first laboratory demonstration of a theory, explaining the magnetic field of numerous cosmic bodies, debated by physicists for nearly a century. Using the FLASH physics simulation code, developed by the Flash Center for Computational Science at UChicago, the researchers designed an experiment conducted at the OMEGA Laser Facility in Rochester, NY to recreate turbulent dynamo conditions.

Confirming decades of numerical simulations, the experiment revealed that turbulent plasma could dramatically boost a weak magnetic field up to the magnitude observed by astronomers in stars and galaxies.

"We now know for sure that turbulent dynamo exists, and that it's one of the mechanisms that can actually explain magnetization of the universe," said Petros Tzeferacos, research assistant professor of astronomy and astrophysics and associate director of the Flash Center. "This is something that we hoped we knew, but now we do."

A mechanical dynamo produces an electric current by rotating coils through a magnetic field. In astrophysics, dynamo theory proposes the reverse: the motion of electrically-conducting fluid creates and maintains a magnetic field. In the early 20th century, physicist Joseph Larmor proposed that such a mechanism could explain the magnetism of the Earth and Sun, inspiring decades of scientific debate and inquiry.

While numerical simulations demonstrated that turbulent plasma can generate magnetic fields at the scale of those observed in stars, planets, and galaxies, creating a turbulent dynamo in the laboratory was far more difficult. Confirming the theory requires producing plasma at extremely high temperature and volatility to produce the sufficient turbulence to fold, stretch and amplify the magnetic field.

To design an experiment that creates those conditions, Tzeferacos and colleagues at UChicago and the University of Oxford ran hundreds of two- and three-dimensional simulations with FLASH on the Mira supercomputer at Argonne National Laboratory. The final setup involved blasting two penny-sized pieces of foil with powerful lasers, propelling two jets of plasma through grids and into collision with each other, creating turbulent fluid motion.

"People have dreamed of doing this experiment with lasers for a long time, but it really took the ingenuity of this team to make this happen," said Donald Lamb, the Robert A. Millikan Distinguished Service Professor Emeritus in Astronomy & Astrophysics and director of the Flash Center. "This is a huge breakthrough."

The team also used FLASH simulations to develop two independent methods for measuring the magnetic field produced by the plasma: proton radiography, the subject of a recent paper from the FLASH group, and polarized light, based on how astronomers measure the magnetic fields of distant objects. Both measurements tracked the growth in mere nanoseconds of the magnetic field from its weak initial state to over 100 kiloGauss -- stronger than a high-resolution MRI scanner and a million times stronger than the magnetic field of the Earth.

"This work opens up the opportunity to verify experimentally ideas and concepts about the origin of magnetic fields in the universe that have been proposed and studied theoretically over the better part of a century," said Fausto Cattaneo, Professor of Astronomy and Astrophysics at the University of Chicago and a co-author of the paper.

Now that a turbulent dynamo can be created in a laboratory, scientists can explore deeper questions about its function: how quickly does the magnetic field increase in strength? How strong can the field get? How does the magnetic field alter the turbulence that amplified it?

"It's one thing to have well-developed theories, but it's another thing to really demonstrate it in a controlled laboratory setting where you can make all these kinds of measurements about what's going on," Lamb said. "Now that we can do it, we can poke it and probe it."

###

In addition to Tzeferacos and Lamb, UChicago co-authors on the paper include Carlo Graziani and Gianluca Gregori, who is also professor of physics at the University of Oxford. The research was funded by the European Research Council and the U.S. Department of Energy.

Media Contact

Rob Mitchum
rmitchum@uchicago.edu
773-834-5336

 @UChicago

http://www-news.uchicago.edu 

Rob Mitchum | EurekAlert!

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>