Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Stuff that Planets Are Made of

09.10.2018

UZH researchers have analyzed the composition and structure of far-away exoplanets using statistical tools. Their analysis indicates whether a planet is earth-like, made up of pure rock or a water-world. The larger the planet, the more hydrogen and helium surround it.

Is there a second Earth out there in space? Our knowledge of planetary systems far, far away is increasing constantly, as new technologies continue to sharpen our gaze into space. To date, 3,700 planets have already been discovered outside our solar system.


Possible model of exoplanets with a rocky core and gaseous atmosphere (Artist's impression).

UZH


Possible model of exoplanets with a rocky core and gaseous atmosphere (Artist's impression).

UZH

The planetary masses and radii of these exoplanets can be used to infer their mean density, but not their exact chemical composition and structure. The intriguing question about what these planets could look like is thus still open.

“Theoretically, we can assume various compositions, such as a world of pure water, a world of pure rock, and planets that have hydrogen-helium atmospheres and explore what radii are expected” explains Michael Lozovsky, a doctoral candidate in the group of Prof. Ravit Helled at the Institute for Computational Science at the University of Zurich.

Thresholds for planetary composition

Lozovsky and collaborators have used databases and statistical tools to characterize exoplanets and their atmospheres. These are fairly common and surrounded by a volatile layer of hydrogen and helium. However, the directly measured data previously didn’t allow the researchers to determine the exact structure, since different compositions may lead to the same mass and radius.

In addition to the accuracy of the data relating to mass and radius, the research team thus also investigated the assumed internal structure, temperature and reflected radiation in 83 of the 3,700 known planets, for which the masses and radii are well-determined.

“We used a statistical analysis to set limits on possible compositions. Using a database of detected exoplanets, we found that every theoretical planetary structure has a ‘threshold radius’, a planetary radius above which no planets of this composition exist,” explains Michael Lozovsky. The amount of elements in the gaseous layer that are heavier than helium, the percentage of hydrogen and helium, as well as the distribution of elements in the atmosphere are important factors in determining the threshold radius.

Super-Earths and mini-Neptunes

The researchers from the Institute for Computational Science found that planets with a radius of up to 1.4 times that of Earth (6,371 kilometers) can be earth-like, i.e. they have a composition similar to Earth. Planets with radii above this threshold have a higher share of silicates or other light materials.

Most of the planets with a radius above 1.6 radii of the Earth must have a layer of hydrogen-helium gas or water in addition to their rocky core, while those larger than 2.6 Earth radii can’t be water worlds and therefore might be surrounded by an atmosphere.

Planets with radii larger than 4 Earth radii are expected to be very gaseous and consist of at least 10 percent hydrogen and helium, similarly to Uranus and Neptune.

The findings of the study provide new insights into the development and diversity of these planets. One particularly interesting threshold concerns the difference between large terrestrial-like planets – otherwise known as super-Earths – and small gaseous planets, also referred to as mini-Neptunes.

According to the researchers, this threshold lies at a radius of three times that of Earth. Below this threshold, it is therefore possible to find earth-like planets in the vast expanse of the galaxy.

Wissenschaftliche Ansprechpartner:

Michael Lozovsky
Institute for Computational Science (ICS)
University of Zurich
Phone +41 44 635 61 89
E-mail: michloz@mail.com

Originalpublikation:

Literature:
M. Lozovsky, R. Helled, C. Dorn, and J. Venturini. Threshold Radii of Volatile-Rich Planets. Astrophysics. Astrophysical Journal. 9. October 2018, DOI: 10.3847/1538-4357/aadd09

Weitere Informationen:

https://www.media.uzh.ch/en/Press-Releases/2018/Exoplanets.html

Melanie Nyfeler | Universität Zürich

More articles from Physics and Astronomy:

nachricht Columbia engineers build smallest integrated Kerr frequency comb generator
09.10.2018 | Columbia University School of Engineering and Applied Science

nachricht Metal leads to the desired configuration
09.10.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

Im Focus: Researchers discover how fatal biofilms form

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come a lot closer to understanding how these biofilms develop, and potentially how to stop them.

Biofilms form when bacterial cells gather and develop structures that bond them in a gooey substance. This glue can protect the cells from the outside world...

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

Im Focus: Breakthrough in quantum physics: Reaction of quantum fluid to photoexcitation of dissolved particles

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Columbia engineers build smallest integrated Kerr frequency comb generator

09.10.2018 | Physics and Astronomy

Big discoveries about tiny particles

09.10.2018 | Life Sciences

Cleaning, but safely! Cocoons protect sensitive ant brood during toxic disinfection

09.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>