Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M astronomers help find distant galaxy cluster to shed light on early universe

07.03.2012
A decade ago, Houston businessman and philanthropist George P. Mitchell was so certain there were big discoveries to be made in physics and astronomy and that they should come out of Texas A&M University, he put money on it, endowing the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy to bring the world's most eminent minds in physics and astronomy to Aggieland.

Last June that investment paid off when an international collaboration featuring Texas A&M astronomers Dr. Kim-Vy Tran and Dr. Casey Papovich gathered at Mitchell's Cook's Branch Conservancy (a picturesque 6,000-acre preserve in the east Texas Pineywoods northwest of Houston) for a team brainstorm that recently resulted in the breakthrough discovery of the most distant galaxy cluster found to date.

"This discovery was actually made at Cook's Branch this past June," Tran says. "We were just starting to analyze the data, and Lee [Spitler] had just found this object, so we started talking about it that day."

Galaxy clusters, known as the "urban centers" of the universe, today may contain thousands of galaxies and are viewed as important building blocks with the power to unlock the mysteries of galaxy evolution and conditions in the universe's earliest moments. Tran notes this cluster is located 10.5 billion light-years away from our own Milky Way galaxy and is made up of a dense concentration of 30 galaxies that is the seed for a much bigger "city."

"Our galaxy cluster is observed when the universe was only three billion years old," says Spitler, an astrophysicist at Swinburne University of Technology in Australia and lead author of the team's study, known as the FourStar Galaxy Evolution Survey (Z-FOURGE). "This means it is still young and should continue to grow into an extremely dense structure containing many more galaxies."

The team's findings, funded in part through the National Science Foundation, will be published in the Astrophysical Journal Letters.

Much like Mitchell's vision of Texas A&M as a diamond in the rough, the Z-FOURGE team likewise discovered their recent find hidden in plain sight — essentially the middle of one of the most well-studied regions in the sky. Located near the star constellation Leo, Spitler notes this region has been carefully examined for thousands of hours using all major observing facilities on the ground and in space, including nearly one month of observing time from the Hubble Space Telescope.

Papovich credits the team's discovery to solid science and analysis armed with modern technology — in this case, a new camera built by Z-FOURGE collaborators at Carnegie Observatories. The camera, dubbed FourStar and installed in December 2010 on the Magellan 6.5-meter telescope in Chile, features five specially designed infrared filters that deliver an unprecedentedly precise combination of wavelength resolution and low-light sensitivity, thereby enabling the team to accurately measure the distances to thousands of different galaxies at a time, including those too faint to be detected through previous methods.

"Most other surveys were just looking at the tip of the iceberg," Tran explains. "The modern technology contained in this camera enabled us to detect the faintest light possible, allowing us to see much more of the iceberg than previously revealed.

"It's like we're using a comb to sift through the very distant universe. The combination of filters and depth provided by this camera give us the equivalent of more teeth, resulting in better measurements and more accurate results."

From the first six months of the survey, the team obtained accurate distances for faint galaxies across a region about one-fifth the size of the Moon as seen from Earth. Though the area is relatively small, they found roughly a thousand galaxies more than 10.5 billion light-years away.

"These new filters are a novel approach; it's a bit like being able to do a CAT scan of the sky to rapidly make a 3-D picture of the early universe," says Swinburne's Karl Glazebrook, who is leading the Australian component of the international collaboration formed in 2009.

The Z-FOURGE survey is led by Dr. Ivo Labbe at Leiden Observatories in The Netherlands.

"These are the first steps of accurately measuring the rate at which these large urban cities formed in a dark-matter-dominated universe," Papovich says. "The rate at which they come together tests our understanding of how structures in the universe formed.

"The broader the timeline, the better our chances of being accurate. Instrumentation is key, and as it evolves, we'll keep pushing the boundaries."

For more information on the Z-FOURGE collaboration and their results, go to http://z-fourge.strw.leidenuniv.nl/index.html.

To learn more about Texas A&M Astronomy, visit http://astronomy.tamu.edu/.

To see a video animation of the discovery produced by Spitler, go to http://faculty.physics.tamu.edu/vy/downloads/zfourge/z22_movie.m4v.mp4.

Media contact: Shana K. Hutchins, (979) 862-1237 or shutchins@science.tamu.edu; Dr. Kim-Vy Tran, (979) 458-7922 or vy@physics.tamu.edu; or Dr. Casey Papovich, (979) 862-2704 or papovich@physics.tamu.edu

Shana Hutchins | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>