Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tau Ceti: The next Earth? Probably not

23.04.2015

The list of potential life-supporting planets just got a little shorter

As the search continues for Earth-size planets orbiting at just the right distance from their star, a region termed the habitable zone, the number of potentially life-supporting planets grows. In two decades we have progressed from having no extrasolar planets to having too many to search.


How would an alien world like this look? That's the question that ASU undergraduate art major Joshua Gonzalez attempted to answer. He worked with Professor Patrick Young's group to learn how to analyze stellar spectra to find chemical abundances, and inspired by the scientific results, he created two digital paintings of possible unusual extrasolar planets, one being Tau Ceti for his Barrett Honors Thesis.

Credit: Joshua Gonzalez

Narrowing the list of hopefuls requires looking at extrasolar planets in a new way. Applying a nuanced approach that couples astronomy and geophysics, Arizona State University researchers report that from that long list we can cross off cosmic neighbor Tau Ceti.

The Tau Ceti system, popularized in several fictional works, including Star Trek, has long been used in science fiction, and even popular news, as a very likely place to have life due to its proximity to Earth and the star's sun-like characteristics. Since December 2012 Tau Ceti has become even more appealing, thanks to evidence of possibly five planets orbiting it, with two of these - Tau Ceti e and f - potentially residing in the habitable zone.

Using the chemical composition of Tau Ceti, the ASU team modeled the star's evolution and calculated its habitable zone. Although their data confirms that two planets (e and f) may be in the habitable zone it doesn't mean life flourishes or even exists there.

"Planet e is in the habitable zone only if we make very generous assumptions. Planet f initially looks more promising, but modeling the evolution of the star makes it seem probable that it has only moved into the habitable zone recently as Tau Ceti has gotten more luminous over the course of its life," explains astrophysicist Michael Pagano, ASU postdoctoral researcher and lead author of the paper appearing in the Astrophysical Journal. The collaboration also included ASU astrophysicists Patrick Young and Amanda Truitt and mineral physicist Sang-Heon (Dan) Shim.

Based upon the team's models, planet f has likely been in the habitable zone much less than 1 billion years. This sounds like a long time, but it took Earth's biosphere about 2 billion years to produce potentially detectable changes in its atmosphere. A planet that entered the habitable zone only a few hundred million years ago may well be habitable and even inhabited, but not have detectable biosignatures.

According to Pagano, he and his collaborators didn't pick Tau Ceti "hoping, wanting, or thinking" it would be a good candidate to look for life, but for the idea that these might be truly alien new worlds.

Tau Ceti has a highly unusual composition with respect to its ratio of magnesium and silicon, which are two of the most important rock forming minerals on Earth. The ratio of magnesium to silicon in Tau Ceti is 1.78, which is about 70% more than our sun.

The astrophysicists looked at the data and asked, "What does this mean for the planets?"

Building on the strengths of ASU's School of Earth and Space Exploration, which unites earth and space scientists in an effort to tackle research questions through a holistic approach, Shim was brought on board for his mineral expertise to provide insights into the possible nature of the planets themselves.

"With such a high magnesium and silicon ratio it is possible that the mineralogical make-up of planets around Tau Ceti could be significantly different from that of Earth. Tau Ceti's planets could very well be dominated by the mineral olivine at shallow parts of the mantle and have lower mantles dominated by ferropericlase," explains Shim.

Considering that ferropericlase is much less viscous, or resistant to flowing, hot, yet solid, mantle rock would flow more easily, possibly having profound effects on volcanism and tectonics at the planetary surface, processes which have a significant impact on the habitability of Earth.

"This is a reminder that geological processes are fundamental in understanding the habitability of planets," Shim adds.

"Tau Ceti has been a popular destination for science fiction writers and everyone's imagination as somewhere there could possibly be life, but even though life around Tau Ceti may be unlikely, it should not be seen as a letdown, but should invigorate our minds to consider what exotic planets likely orbit the star, and the new and unusual planets that may exist in this vast universe," says Pagano.

###

This work was supported by funding from the NASA Astrobiology Institute and NASA Nexus for Exoplanet System Science.

Image 1 caption: How would an alien world like this look? That's the question that undergraduate art major Joshua Gonzalez attempted to answer. He worked with Professor Patrick Young's group to learn how to analyze stellar spectra to find chemical abundances, and inspired by the scientific results, he created two digital paintings of possible unusual extrasolar planets, one being Tau Ceti for his Barrett Honors Thesis. Credit: Joshua Gonzalez

Image 2 caption: An artist's impression of the Tau Ceti system. Credit: J. Pinfield for the RoPACS network at the University of Hertfordshire, 2012

SOURCE:

Mike Pagano, mpagano@asu.edu

MEDIA CONTACT:

Nikki Cassis, ncassis@asu.edu
(602) 710-7169

Arizona State University
School of Earth and Space Exploration
College of Liberal Arts and Sciences
Tempe, Arizona USA
http://www.sese.asu.edu

Nikki Cassis | EurekAlert!

Further reports about: Arizona Earth Exploration NASA Pagano Planet explains extrasolar planets habitable zone processes

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>