Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to know the sun advances fusion research

08.11.2010
Coaxial helicity injection could make fusion reactors cheaper

Researchers at the Princeton Plasma Physics Laboratory have successfully used Coaxial Helicity Injection (CHI) to generate plasma current and couple it to a conventional current generation method at the National Spherical Torus Experiment (NSTX) fusion experiment.

After coupling, the combined process generated 1 million amperes of current using 40 percent less energy than needed to generate this current using the conventional means by itself, thus demonstrating that a high-quality initial magnetic configuration was produced by CHI.

Plasma confinement devices based on the tokamak concept rely on a solenoid through the center of the device to generate the initial current. Because the solenoid is used as an electrical transformer, its pulse length is limited in duration and it cannot sustain the initial current indefinitely in a steady-state reactor.

Thus a method to eliminate the solenoid would remove a large component from the center of the tokamak, making the device simpler and less expensive. This allows the freed space in the center to be used in optimizing the device, making the tokamak more efficient by producing a magnetic configuration similar to that in a spherical tokamak.

CHI generates plasma currents by producing a magnetic bubble using magnetic reconnection. This is analogous to producing a soap bubble by blowing air through a ring dipped in soap solution. During CHI, currents are driven along magnetic filaments so that the resulting magnetic forces overcome the magnetic filament tension and cause the magnetic surface to stretch into the tokamak vessel. The figure below is a sequence of visible camera images that shows the bubble being generated on the lower part of NSTX and expanding to fill the entire vessel volume. Solar flares on the surface of the sun erupt and also reconnect through the process of magnetic reconnection.

After this bubble has been created in NSTX it carries a current of more than 250 thousand amperes, which is 100 times more than the seed current used to initiate the discharge. As a result of this very high current multiplication factor the process is efficient and consumes less than one Joule of stored energy to generate 10 amperes of current. The CHI method has been studied in the smaller Helicity Injected Tokamak (HIT-II) at the University of Washington in which the current multiplication factor was six. NSTX is thirty times larger in volume, and researchers have found the process to be much more efficient on NSTX, indicating that the method scales well to future larger machines.

In a steady-state reactor this initial current would be sustained by injecting high-energy particles. These particles would produce more current if the plasma density is small. For easier control of high-performance plasma, it is necessary that the distribution of the plasma current is preferentially driven near the outer edges of the magnetic configuration. The recent CHI discharges on NSTX have also generated the start-up current with these desired features needed for steady-state operation.

These exciting new results, combined with the capability of CHI to produce a large amount of current at high efficiency in larger machines, bodes well for the application of this new method in future tokamaks and spherical tokamaks. These results will be presented in an invited talk at the American Physical Society, Division of Plasma Physics 52nd annual meeting on November 8-12 in Chicago.

Saralyn Stewart | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>