Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Waste: Handling Garbage When Your Dumpster Is 100 Million Miles Away?

20.11.2008
In space, no one takes out the trash. Garbage can pile up, spoil and become a health hazard for astronauts in the cramped living quarters of a space station.

There has never been a good system for dealing with space waste - the space shuttle now brings full trash bags back to Earth; on the Russian space station MIR, junk would accumulate in hallways for months before it was sent to burn up in the Earth's atmosphere.

And that is why Jean Hunter, associate professor of agricultural and biological engineering, has been working with research partner Orbital Technologies Corp. (ORBITEC) of Madison, Wis., to develop a cutting-edge trash dryer for NASA. The space agency will need a new solid waste strategy before it sends astronauts on extended missions to Mars or an outpost on the moon.

Why bother drying trash? In space, waste can't simply be "thrown out." If astronauts place it outside the airlock, it will orbit alongside their spacecraft. If they eject it away from the spacecraft, they might encounter it again later. Or - even worse - it could contaminate another planet.

"We don't know if there's life on Mars," said Hunter, "but we know that our trash is teeming with it." Yes, the trash could be launched toward the sun, she says, but better to take usable resources out of it first. By that she means water, which is the most precious resource that astronauts take with them into space.

Hunter's group has developed a system that blows hot, dry air through wet trash and then collects water from the warm, moist air that emerges. This water can be purified for drinking, and the remaining trash is dry, odorless and inert. The air and the heat are both recycled to contain odors and save energy.

Heat-pump dehumidification drying, as the technique is called, which has commonly been used for drying lumber, needs to be adapted for space, though, because existing systems depend on the Earth's gravity and contain materials unacceptable for spaceflight. Hunter's team - including graduate student Apollo Arquiza, Jasmin Sahbaz '10, Carissa Jones '09 and high school student Trudy Chu - has been testing the dryer with fake "space trash" - a mix of paper towels, duct tape, baby wipes and dog food (to simulate the astronauts' food scraps).

"When people think about garbage in space, they remember the trash compactor scene from "Star Wars" - and believe it or not, there's some truth to that scene," Hunter said. "Trash in space is like you saw in the movie: big, wet, nasty and varied" (though, of course, without any trash-dwelling monsters).

A prototype heat-pump dryer is currently being tested at the NASA Ames Research Center. If NASA selects the Cornell/ORBITEC model (which Hunter describes in several peer-reviewed Society for Automotive Engineer technical papers) over dryers developed by competing groups, ORBITEC will make a prototype that performs under zero gravity, is small and light enough for a spacecraft and can survive the rigors of a rocket launch.

The future of Hunter's trash dryer technology - and of the entire manned spaceflight program, for that matter - will ultimately depend on the goals of the Obama administration.

"This whole thing could get mothballed," Hunter said, although she's hopeful that NASA will continue with its plans to return humans to the moon by 2019. "Now that we see India, Japan and China all interested in going back to the moon, I think the next president will want our nation to be part of that, too."

Recycling urine in space: Jean Hunter's team is also working on recovering potable water from space wastewater. On the International Space Station only cabin humidity condensate (moisture exhaled by astronauts and evaporated from wet towels and clothing) is now recovered and purified. Urine is chemically stabilized and stockpiled, and the astronauts use baby wipes and moist towels to keep clean, so there is no hygiene water.

On the planned lunar outpost, urine and hygiene water will have to be recycled. Existing NASA technology can recover around 85 percent of that water, but the last 15 percent, charitably called "brine," poses a much greater challenge. Hunter's team has a grant with ORBITEC to develop a new specialized brine dryer, but the team has submitted another proposal to dry brine in the trash dryer.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Nov08/SpaceWaste.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>