Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solid-state controllable light filter may protect preterm infants from disturbing light

07.05.2013
Preterm infants appear to mature better if they are shielded from most wavelengths of visible light, from violet to orange.

But it has been a challenge to develop a controllable light filter for preterm incubators that can switch between blocking out all light--for sleeping--and all but red light to allows medical staff and parents to check up on the kids when they're awake.

Now, in a paper accepted for publication in Applied Physics Letters, a journal of the American Institute of Physics, researchers describe a proof-of-concept mirror that switches between reflective and red-transparent states when a small voltage is applied.

The research team had previously identified a magnesium-iridium reflective thin film that transforms into a red-transparent state when it incorporates protons. Providing those protons in a way that is practical for preterm incubators, however, was the challenge. The typical method--using dilute hydrogen gas--is unacceptable in a hospital setting.

So the team created a stack of thin films that includes both an ion storage layer and the magnesium-iridium layer: a voltage drives protons from the ion storage layer to the magnesium-iridium layer, transforming it into its red-transparent state. Reversing the voltage transforms it back into a reflective mirror.

The researchers report that the device still allows some undesirable light wavelengths through, but a force of just 5 V changes the device's state in as little as 10 seconds. The researchers are now looking at other materials to improve color filtering and switching speed.

Article: "Controllable light filters using an all-solid-state switchable mirror with a Mg-Ir thin film for preterm infant incubators," is published in Applied Physics Letters.

Link: http://apl.aip.org/resource/1/applab/v102/i16/p161913_s1

Authors: Kazuki Tajima(1), Mika Shimoike(1), Heng Li(2), Masumi Inagaki(2), Hitomi Izumi(2), Misaki Akiyama(2), Yukiko Matsushima(2), Hidenobu Ohta(2)

(1) National Institute of Advanced Industrial Science and Technology (2) National Center of Neurology and Psychiatry

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>