Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaking Down Frozen Helium: In a ‘Supersolid’ State, It Has Liquid-Like Characteristics

13.05.2011
In a four-decade, Holy Grail-like quest to fully understand what it means to be in a “supersolid” state, physicists have found that supersolid isn’t always super solid. In other words, this exotic state of frozen helium appears to have liquid-like properties, says a new paper published in the journal Science (May 13, 2011).

Why is this important? Understanding supersolid helium brings us closer to understanding its close cousins superconductivity and superfluidity.

Physicists had long thought that the unusual behavior of torsion oscillators containing solid helium meant that chilling helium down to temperatures near absolute zero prompts its transformation into a supersolid. It is certainly solid, but in this physical quest, there was a nagging question: Is it a true supersolid?

To gain new perspectives on solid helium, new research tools were needed. “Think of this analogy: when Galileo first peered through a telescope, he saw ears on Saturn. With improved technology, humanity began to understand those ears were actually rings around the planet. And with better technology, we saw the differences in the rings. To further understand solid helium, science had to invent new approaches,” says Séamus Davis, Cornell professor of physics. “Helium is a pure material. We’re gaining a new understanding of the fundamental issues of how nature works, of how the universe works.”

In fact, in this paper, the researchers show instead a more prosaic explanation: There are moving defects in the solid helium crystals, and their relaxation time falls with rising temperatures. This is more consistent with the torsional oscillation (shaking) experiments conducted at Cornell.

The researchers learned that the unusual properties of solid helium do not reflect a clunky transition between the solid state and a supersolid state. It behaves like a dimmer switch and presents a smooth transition near absolute zero.

The research, “Interplay of Rotational, Relaxational, and Shear Dynamics in Solid 4He,” is reported in Science (May 13, 2011). The lead authors are Ethan Pratt, Cornell Ph.D. ’10, post-doctoral researcher at Cornell and Ben Hunt, Cornell Ph.D. ’09, currently at Massachusetts Institute of Technology. The other authors are Séamus Davis, the J.G. White Distinguished Professor in the Physical Sciences at Cornell, and graduate student Vikram Gadagkar; Alexander Balatsky and Matthias Graf, Los Alamos National Laboratory; and Minoru Yamashita at Kyoto University.

Funding for this research: the National Science Foundation and the Kavli Institute for Theoretical Physics. Research at Los Alamos was supported by U.S. Department of Energy, through the Laboratory Directed Research and Development program.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>