Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SF State astronomers discover new planet in Pisces constellation

10.01.2014
A team led by SF State astronomer Stephen Kane has discovered a new giant planet located in a star system within the Pisces constellation. The planet, perhaps twice the mass of Jupiter, could help researchers learn more about how extrasolar planets are formed.

The star system harboring the new planet contains only one star, as do the other three systems with extrasolar planets analyzed by Kane, an assistant professor of physics and astronomy, and his colleagues. It is a surprising finding, given the high rate of multiple-star systems in our solar neighborhood.

"There is a great interest in these stars that are known to host planets," Kane explained, since astronomers suspect that planet formation in a multi-star system would be very different from planet formation in a single-star system like our own. Kane presented his findings today at the annual conference of the American Astronomical Society.

A multiple-star system "might have not one but two planetary disks" where planets form, he said. "Or it could be that having an extra star would be disruptive, and its gravity could cause any protoplanets to pull apart."

Relatively few extrasolar planets have been found in multiple-star systems, "but we know that they are there," Kane said.

In the four systems studied by the researchers, using optical imaging data collected at the Gemini North observatory in Hawaii, there were some intriguing signs that perhaps a second star -- or something else -- was present.

In each system, the extrasolar planets were discovered by the radial velocity technique, pioneered at SF State by astronomer Geoffrey Marcy, now at the University of California, Berkeley. The radial velocity technique measures variations in the speed at which a star moves away and toward Earth, perturbed or "wobbled" by the gravitational pull of a nearby cosmic body. Depending on the radial velocity signature, astronomers can calculate whether the wobble is coming from a planet or star.

In the star systems studied by Kane and his colleagues, there was a part of the radial velocity data that couldn't be explained entirely by the pull of an orbiting planet. And at the same time, the planets that had already been discovered in these systems followed eccentric orbits, swinging away from their stars in a less circular and more elliptical fashion, "more like that of a comet," Kane said.

With these two clues, the researchers wondered if the radial velocity and eccentric orbits might be explained by the presence of another star in the system. But when they took a closer look at the systems, they were able to rule out the possibility that another star was perturbing the system.

"I thought we were likely to find stellar companions, and when all four didn't have a binary star, that did surprise me," Kane said.

But in the case of one star, Pisces' HD 4230, the unexplained radial velocity appears to be coming from the pull of a previously undiscovered giant planet, the researchers report. They confirmed the planet's presence with additional radial velocity data collected at Hawaii's Keck observatory.

Given that the researchers did not find any stellar companions, Kane says it is very likely that the leftover radial velocity is instead a signal that there are additional planets to be found in all four systems. The researchers feel this is especially true for the system called HD 168443, where their ability to detect a companion star was very strong.

Kane is one of the few astronomers to use a variety of planet-hunting techniques, including radial velocity and imaging. He said that the new findings had motivated him to look at other extrasolar systems with similar kinds of unexplained radial velocity data, to see if other stars or planets may be lurking there.

"Limits on Stellar Companions to Exoplanet Host Stars with Eccentric Planets" is in press at Astrophysical Journal. Kane co-authored the study with SF State Postdoctoral Fellow Natalie R. Hinkel; Steve B. Howell of NASA Ames Research Center; Elliott P. Horch of Southern Connecticut State University; Ying Feng and Jason T. Wright of Pennsylvania State University; David R. Ciardi of NASA Exoplanet Science Institute; Mark E. Everett of National Optical Astronomy Observatory and Andrew W. Howard of the University of Hawaii.

SF State is the only master's level public university serving the counties of San Francisco, San Mateo and Marin. The university enrolls more than 30,000 students each year. With nationally acclaimed programs in a range of fields -- from creative writing, cinema and biology to history, broadcast and electronic communications arts, theatre arts and ethnic studies -- the University's more than 219,000 graduates have contributed to the economic cultural and civic fabric of San Francisco and beyond.

Nan Broadbent | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>