Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers propose new way to chart the cosmos in 3-D

21.09.2015

If only calculating the distance between Earth and far-off galaxies was as easy as pulling out the old measuring tape. Now UBC researchers are proposing a new way to calculate distances in the cosmos using mysterious bursts of energy.

In a study featured today in the journal Physical Review Letters, UBC researchers propose a new way to calculate cosmological distances using the bursts of energy also known as fast radio bursts. The method allows researchers to position distant galaxies in three dimensions and map out the cosmos.


UBC researchers are proposing a new way to calculate distances in the cosmos using mysterious bursts of energy.

Credit: Kris Sigurdson

"We've introduced the idea of using these new phenomena to study cosmological objects in the universe," said Kiyoshi Masui, a postdoctoral fellow at UBC and a global scholar with the Canadian Institute for Advanced Research. "We believe we'll be able to use these flashes to put together a picture of how galaxies are spread through space."

Some unknown astrophysical phenomenon is causing these bursts of energy that appear as a short flashes of radio waves. While only 10 fast radio bursts have ever been recorded, scientists believe there could be thousands of them a day.

As these fast radio bursts travel toward Earth, they spread out and arrive at different times based on their wavelengths. The researchers propose using the delay between the arrival times of different frequencies to map the cosmos.

The amount of spread in the signal that arrives on Earth gives scientists a sense of how many electrons, and by extension how much material including stars, gas and dark matter, are in between Earth and the source of the burst.

Canada's CHIME (Canadian Hydrogen Intensity Mapping Experiment) radio telescope could offer the first set of regular data from fast radio bursts. The project is a collaboration between Canadian universities UBC, McGill, and the University of Toronto and is currently under construction at the Dominion Radio Astrophysical Observatory in Penticton, Canada.

"CHIME has the potential of seeing tens to hundreds of these events per day so we can build a catalogue of events," said Kris Sigurdson, associate professor in the Department of Physics and Astronomy who is also part of the CHIME project. "If they are cosmological, we can use this information to build catalogue of galaxies."

This method could be an efficient way to build a three-dimensional image of the cosmos. The tool could also be used to map the distribution of material in the universe and inform our understanding of how it evolved.

###

BACKGROUND

To measure the distance to far away objects and map space, scientists typically use the redshift of light, a technique based on the understanding that our universe is expanding. The further away an object is from the Earth, the faster it moves. The new research offers scientists a different way to chart how matter is distributed in the universe.

With this new method, scientists use the information from radio bursts somewhat like how the time-stamped radio signals of GPS satellites are used to locate our location on Earth. However, this cosmological positioning system is used in reverse to locate where the radio signals are coming from.

Media Contact

Heather Amos
heather.amos@ubc.ca
604-822-3213

 @UBCnews

http://www.ubc.ca 

Heather Amos | EurekAlert!

More articles from Physics and Astronomy:

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

nachricht A new stable form of plutonium discovered at the ESRF
21.10.2019 | European Synchrotron Radiation Facility

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New deep-water coral discovered

22.10.2019 | Life Sciences

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

22.10.2019 | Life Sciences

Heat Pumps with Climate-Friendly Refrigerant Developed for Indoor Installation

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>