Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create extra-long electrical arcs using less energy

09.11.2011
Researchers at the University of Canterbury, in New Zealand, have developed a new, lower-voltage method of generating extra-long, lightning-like electrical arcs. The arcs are created when an electrical impulse is applied to a thin copper wire that subsequently explodes.

By jump-starting the arcs using exploding wires, as opposed to the traditional method of directly breaking down air, the researchers reduced the amount of voltage needed to create an arc of a given length by more than 95 percent. This photograph shows a 60-meter-long arc, thought to be the longest of its type ever created using this method.


This photograph shows a 60-meter-long lightning-like electrical arc, created by researchers at the University of Canterbury, in New Zealand. Credit: Credit: Rowan Sinton, Ryan van Herel, Dr. Wade Enright, and Prof. Pat Bodger (researchers), Ryan van Herel and Dr. Stewart Hardie (photo).

The researchers hope that the new method could have wide applications, including inducing real lightning from thunderclouds and creating novel new electrical machines that contain plasma conductors and coils.

Article: "Generating Extra Long Arcs Using Exploding Wires" is accepted for publication in the Journal of Applied Physics.

Authors: Rowan Sinton (1), Ryan Van Herel (1), Wade Enright (1), and Pat Bodger (1).

(1) University of Canterbury, New Zealand

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>