Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drizzly Mornings on Xanadu

12.10.2007
Morning forecast on Saturn's moon Titan with ESO's VLT

Noted for its bizarre hydrocarbon lakes and frozen methane clouds, Saturn's largest moon, Titan, also appears to have widespread drizzles of methane, according to a team of astronomers at the University of California, Berkeley. New near-infrared images from ESO's Very Large Telescope (VLT) in Chile and the W. M. Keck Observatory in Hawaii show for the first time a nearly global cloud cover at high elevations and, dreary as it may seem, a widespread and persistent morning drizzle of methane over the western foothills of Titan's major continent, Xanadu.

In most of the Keck and VLT images, liquid methane clouds and drizzle appear at the morning edge of Titan, the arc of the moon that has just rotated into the light of the sun.

"Titan's topography could be causing this drizzle," said Imke de Pater, member of the team that made the discovery. "The rain could be caused by processes similar to those on Earth: moisture laden clouds pushed upslope by winds condense to form a coastal rain."

Lead author Máté Ádámkovics noted that only areas near Xanadu exhibited morning drizzle, and not always in the same spot. Depending on conditions, the drizzle could hit the ground or turn into a ground mist. The drizzle or mist seems to dissipate after local mid-morning, which, because Titan takes 16 Earth days to rotate once, is about three Earth days after sunrise. "Maybe only Xanadu has misty mornings," he said.

Ádámkovics first saw evidence of widespread, cirrus-like clouds and methane drizzle when analysing data taken on 28 February 2005 from a new instrument on the VLT - the Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI). Further images and spectra taken on April 17, 2006, by the OH-Suppressing Infra-Red Imaging Spectrograph (OSIRIS) on Keck II confirmed the clouds. Both instruments measure spectra of light at many points in an image rather than averaging over a small aperture or slit. By subtracting light reflected from the surface from the light reflected by the clouds, the researchers were able to obtain images of the clouds covering the entire moon.

Titan, larger than the planet Mercury, is the only moon in the Solar System with a thick atmosphere, which is comprised mostly of nitrogen and resembles Earth's early atmosphere. Previous observations have shown that the entire moon is swathed in a hydrocarbon haze extending as high as 500 kilometres, becoming thinner with height. The south pole area exhibits more haze than elsewhere, with a hood of haze at an altitude between 30 and 50 kilometres.

Because of its extremely cold surface temperature - minus 183 degrees Celsius - trace chemicals such as methane and ethane, which are explosive gases on Earth, exist as liquids or solids on Titan. Some level features on the surface near the poles are thought to be lakes of liquid hydrocarbon analogous to Earth's watery oceans, and presumably these lakes are filled by methane precipitation. ESA's Huygens probe observed features that appear to be controlled by flows down slopes, whether caused by precipitation or springs.

Until now, however, no rain had been observed directly.

"Widespread and persistent drizzle may be the dominant mechanism for returning methane to the surface from the atmosphere and closing the methane cycle, [analogous to Earth's water cycle]", the authors wrote.

Actual clouds on Titan were first imaged in 2001 by de Pater's group and colleagues at Caltech using the Keck II telescope with adaptive optics and confirmed what had been inferred from spectra of Titan's atmosphere. These frozen methane clouds hovered at an elevation of about 30 kilometres around Titan's south pole.

Since then, isolated ethane clouds have been observed at the north pole by NASA's Cassini spacecraft, while both Cassini and Keck photographed methane clouds scattered at mid-southern latitudes. Also in 2005, the ESA Huygens probe, released by Cassini, plummeted through Titan's atmosphere, collecting data on methane relative humidity. These data provided evidence for frozen methane clouds between 25 and 30 kilometres in elevation and liquid methane clouds - with possible drizzle - between 15 and 25 kilometres high. The extent of the clouds detected in the descent area was unclear, however, because "a single weather station like Huygens cannot characterize the meteorology on a planet-wide scale," said co-author Michael H. Wong.

The new images show clearly a widespread cloud cover of frozen methane at a height of 25 to 35 kilometres - "a new type of cloud, a big global cloud of methane," Ádámkovics said - that is consistent with Huygens' measurements, plus liquid methane clouds in the tropopause below 20 kilometres with rain at lower elevations.

"The clouds we see are like cirrus clouds on Earth," Ádámkovics said. "One difference is that the methane droplets are predicted to be at least millimetre-sized on Titan, that is, a thousand times larger than in terrestrial clouds. Since the clouds have about the same moisture content as Earth's clouds, this means the droplets on Titan are much more spread out and have a lower density in the atmosphere, which makes the clouds hard to detect."

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-47-07.html

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>