Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating the biomass of Martian soil

24.08.2007
A new interpretation of data from NASA’s Viking landers indicates that 0.1% of the Martian soil tested could have a biological origin.

Dr Joop Houtkooper of the University of Giessen, Germany, believes that the subfreezing, arid Martian surface could be home to organisms whose cells are filled with a mixture of hydrogen peroxide and water. In a presentation at the European Planetary Science Congress in Potsdam on Friday 24th August, Dr Houtkooper will describe how he has used data from the Gas Exchange (GEx) experiment, carried by NASA’s Viking landers, to estimate the biomass in the Martian soil.

Dr Houtkooper said, “The GEx experiment measured unexplained rises in oxygen and carbon dioxide levels when incubating samples. If we assume these gases were produced during the breakdown of organic material together with hydrogen peroxide solution, we can calculate the masses needed to produce the volume of gas measured. From that, we can estimate the total biomass in the sample of Martian soil. It comes out at little more than one part per thousand by weight, comparable to what is found in some permafrost in Antarctica. This might be detectable by instruments on the Phoenix lander, which will arrive at Mars in May next year.”

Dr Houtkooper and his colleague, Dr Schulze-Makuch from Washington State University, suggest that a hydrogen peroxide-water based organism would be quite capable of surviving in the harsh Martian climate where temperatures rarely rise above freezing and can reach -150 degrees Celsius at the poles. A 60% solution of hydrogen peroxide has a freezing point of -56.5 degrees Celsius, and the supercooling properties of such mixtures could mean that metabolic activity could survive at even lower temperatures. In addition, hydrogen peroxide-water solutions tend to attract water, which means that organisms could scavenge water molecules from the Martian atmosphere.

The downside of the water-scavenging biochemistry is that if the organisms were exposed to liquid water or warm atmospheres with high humidity, they could die through over hydration. In this case, the cell would break down, releasing oxygen. Any organic compounds could then react with the hydrogen peroxide, releasing carbon dioxide, water vapour and traces of nitrogen and minor constituents.

Dr Houtkooper said, “This hydrogen peroxide-water hypothesis could provide answers for several aspects of the Viking results that remain unexplained thirty years on. The concept of this type of life is also interesting for planners of future missions searching for life on Mars. With the long timescales involved in planning and launching Mars landers, there is a dire necessity to anticipate what kind of life we should expect to find and where we should be looking. Organisms with the hydrogen peroxide-water biochemistry would be more likely to be active in colder areas on Mars with high water vapour concentrations, as would be expected along the polar ice fringe. Looking further ahead, a sample return mission would mean that we could use all that present technology affords to analyse signs of life. However, if the organisms were to have the chemistry we are proposing, they may well decompose completely into gases during the journey back to Earth, without leaving even a smudge behind.”

The existence of organisms with the hydrogen peroxide-water chemistry would raise interesting questions about the origins of life on Earth. Dr Houtkooper does not think that it would necessarily imply independent origins for terrestrial and Martian life. “A detailed study of the biochemistry and genetics would be needed to determine whether the life forms were related. The transfer of terrestrial organisms to Mars or vice versa is a possibility given favorable conditions for the origin and persistence of life on both planets early in solar system history. The transfer of terrestrial organisms by early spacecrafts to Mars that either landed or crashed is a possibility, but it is not plausible that these organisms evolved in a few years.“

Hydrogen peroxide is not unknown in the metabolic processes of terrestrial organisms. The Bombardier beetle, Brachinus Crepitans, uses a 25% solution of hydrogen peroxide to produce a steam explosion in the face of pursuing predators.

Dr Houtkooper said, “There does not appear to be any basic reason why hydrogen peroxide could not be used by living systems. While organisms on Earth have found it advantageous to include salt in their intracellular fluids, hydrogen peroxide may have been more suitable for organisms adapting to the cold, dry environment of Mars.”

Anita Heward | alfa
Further information:
http://nssdc.gsfc.nasa.gov/planetary/viking.html

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>