Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Side-to-side shaking of nanoresonators throws off impurities

15.08.2007
Tiny vibrating silicon resonators are of intense interest in nanotechnology circles for their potential ability to detect bacteria, viruses, DNA and other biological molecules.

Cornell researchers have demonstrated a new way to make these resonators vibrate "in the plane" -- that is, side to side -- and have shown that this can serve a vital function: shaking off extraneous stuff that isn't supposed to be detected.

The research is reported in the July 14 online version of the journal Nano Letters and in the August print edition.

The typical resonator is a cantilever -- a narrow strip of silicon a few millionths of a meter long that can be made to vibrate up and down like a diving board just after someone jumps off. In research aimed at building the much-sought "lab on a chip," Professor Harold Craighead's group at Cornell and other researchers have shown that by binding antibodies to such resonators they can cause pathogens to attach to them. At the nanoscale, just adding the mass of one bacterium, virus or large molecule is enough to change the resonant frequency of vibration of the cantilever by a measurable amount, thereby signaling the presence of the pathogen.

But "If, for example, you are trying to detect E. coli, there will be more things in the fluid than E. coli, and they can weakly absorb on the detector by electrostatic forces. This is a problem in any sort of biodetection," explained B. Rob Ilic, a researcher in the Cornell NanoScale Facility. The answer, he said, is to make the resonator vibrate from side to side. This will shake off loosely adhered materials, while whatever is tightly bound to an antibody will stay put.

Ilic and colleagues made cantilevers about a micron (millionth of a meter) wide, 5 or 10 microns long and 200 nanometers (billionths of a meter) thick, suspended over an empty space about a micron deep. When energy was pumped in from a laser or by an attached vibrating piezoelectric crystal, the cantilevers vibrated up and down at a resonant frequency that depended on their dimensions and mass.

Then the researchers demonstrated that in-plane motion can be created by hitting the base of the cantilever with a laser pulsed at the resonant frequency of the cantilever's in-plane vibration, which is different from the resonant frequency of its vibration perpendicular to the plane. To measure in-plane motion the researchers shined another laser on the free end of the cantilever and detected the chopping of the beam as the cantilever moved from side to side.

To show that in-plane motion could shake unwanted materials off of biosensors, the researchers distributed polystyrene spheres ranging from half a micron to a micron in diameter onto an array of cantilevers. The spheres, which attached themselves by electrostatic attraction, were removed by in-plane shaking. But when the cantilevers were made to vibrate more intensely up and down -- even so far that they bumped the "floor" below -- the spheres did not budge, nor did they during spinning of the entire chip.

In-plane vibration also could be used to determine how strongly particles are bound to the surface by observing how hard they need to be shaken to come loose, Ilic said. The ability to excite in-plane motion also has applications in making nanoscale gyroscopes, in nano optics and for basic physics experiments, he added.

Co-authors with Ilic and Craighead, who is the Charles W. Lake Jr. Professor of Engineering and professor of applied and engineering physics at Cornell, are Slava Krylov, professor in the Department of Solid Mechanics, Materials and Systems at Tel Aviv University, and Marianna Kondratovich, an undergraduate researcher in Cornell's Department of Mechanical and Aerospace Engineering.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>