Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SSTL to develop low cost lunar orbiter for NASA

14.08.2007
Surrey Satellite Technology Ltd (SSTL) has been awarded a contract for the study phase of a potential joint US-UK lunar orbiter mission to be called Magnolia.

This first phase of the contract will run for 9-months, culminating in a preliminary mission design. The contract includes a package of training by SSTL and the University of Surrey that will allow Mississippi State University (MSU) and NASA Stennis Space Center staff to benefit from the know-how accrued by SSTL over the last 25 years, across 27 small satellite missions.

Commenting on the contract award, MSU's David Shaw stated: "MSU is committed to developing a small satellite capability in Mississippi and believes that SSTL is the best partner with whom to achieve that aim". SSTL's founder and Group Executive Chairman, Sir Martin Sweeting, added: "We are delighted to be working with our US partners on this programme and look forward to the exciting possibility of a joint US-UK lunar mission. SSTL is committed to driving down the cost of space missions in Earth orbit and beyond."

In 2006, SSTL performed a lunar exploration design study for the UK government's Particle Physics and Astronomy Research Council (Footnote 1). The study was supported by a group of UK scientists and showed the feasibility of a pair of low cost missions known as MoonLITE and MoonRaker.

SSTL has already developed equipment for interplanetary missions such as the Rosetta comet chaser and recently delivered a payload processor for a US radar to fly onboard the 2008 Indian lunar mission, Chandrayaan-1. Looking further into space, SSTL has performed a European Space Agency feasibility study for a low cost mission to Venus and has studied potential missions to near-Earth asteroids and Earth re-entry for the future return of samples from Mars. Magnolia marks SSTL's next step beyond low Earth Orbit.

The next phase of the Magnolia mission is planned to start in 2008 and could lead to the launch of the mission in 2010.

The contract, between MSU and SSTL follows the signing of a Joint Statement of Intent between NASA and the UK's BNSC (Footnote 2).

Surrey Satellite Technology Ltd (SSTL) develops innovative technologies to change the economics of space, delivering cost effective satellite missions within rapid timescales. The Company is a world leader in the design, manufacture and operation of high performance small satellites with experience gained over more than 25 years and 27 missions launched.

SSTL employs 250 staff working on LEO, GEO and interplanetary missions, turnkey satellite platforms and space-proven satellite subsystems and optical systems. The Company also provides know-how transfer and training programmes and consultancy services, and performs studies for ESA, NASA and commercial customers related to platform design, mission analysis and planning.

Based in Guildford, UK, SSTL is owned by the University of Surrey (85%), SSTL staff (5%), and SpaceX of the USA (10%).

Stuart Miller | alfa
Further information:
http://www.nasa.gov/pdf/174684main_Signed_Joint_Statement.pdf

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>