Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Illinois at Urbana-Champaign

04.06.2007
Researchers at the University of Illinois are developing panels of microcavity plasma lamps that may soon brighten people’s lives. The thin, lightweight panels could be used for residential and commercial lighting, and for certain types of biomedical applications.

“Built of aluminum foil, sapphire and small amounts of gas, the panels are less than 1 millimeter thick, and can hang on a wall like picture frames,” said Gary Eden, a professor of electrical and computer engineering at the U. of I., and corresponding author of a paper describing the microcavity plasma lamps in the June issue of the Journal of Physics D: Applied Physics.

Like conventional fluorescent lights, microcavity plasma lamps are glow-discharges in which atoms of a gas are excited by electrons and radiate light. Unlike fluorescent lights, however, microcavity plasma lamps produce the plasma in microscopic pockets and require no ballast, reflector or heavy metal housing. The panels are lighter, brighter and more efficient than incandescent lights and are expected, with further engineering, to approach or surpass the efficiency of fluorescent lighting.

The plasma panels are also six times thinner than panels composed of light-emitting diodes, said Eden, who also is a researcher at the university’s Coordinated Science Laboratory and the Micro and Nanotechnology Laboratory.

A plasma panel consists of a sandwich of two sheets of aluminum foil separated by a thin dielectric layer of clear aluminum oxide (sapphire). At the heart of each lamp is a small cavity, which penetrates the upper sheet of aluminum foil and the sapphire.

“Each lamp is approximately the diameter of a human hair,” said visiting research scientist Sung-Jin Park, lead author of the paper. “We can pack an array of more than 250,000 lamps into a single panel.”

Completing the panel assembly is a glass window 500 microns (0.5 millimeters) thick. The window’s inner surface is coated with a phosphor film 10 microns thick, bringing the overall thickness of the lamp structure to 800 microns.

Flat panels with radiating areas of more than 200 square centimeters have been fabricated, Park said. Depending upon the type of gas and phosphor used, uniform emissions of any color can be produced.

In the researchers’ preliminary plasma lamp experiments, values of the efficiency – known as luminous efficacy – of 15 lumens per watt were recorded. Values exceeding 30 lumens per watt are expected when the array design and microcavity phosphor geometry are optimized, Eden said. A typical incandescent light has an efficacy of 10 to 17 lumens per watt.

The researchers also demonstrated flexible plasma arrays sealed in polymeric packaging. These devices offer new opportunities in lighting, in which lightweight arrays can be mounted onto curved surfaces – on the insides of windshields, for example.

The flexible arrays also could be used as photo-therapeutic bandages to treat certain diseases – such as psoriasis – that can be driven into remission by narrow-spectrum ultraviolet light, Eden said.

With Eden and Park, co-authors of the paper are graduate students Andrew Price and Jason Readle, and undergraduate student Jekwon Yoon.

Funding was provided by the U.S. Air Force Office of Scientific Research and the Office of Naval Research.

Gary Eden | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

nachricht UA-led OSIRIS-REx discovers water on asteroid, confirms Bennu as excellent mission target
11.12.2018 | University of Arizona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>