Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex order parameter in ruthenate superconductors confirmed

29.11.2006
Since it was discovered to be superconducting over a decade ago, the pairing symmetry of strontium ruthenium oxide has been widely explored and debated. Now, a team of researchers led by Dale Van Harlingen at the University of Illinois at Urbana-Champaign say the debate is over.

“We have pretty unambiguous evidence for ‘p-wave’ symmetry with a complex order parameter that breaks time-reversal symmetry in this ruthenate superconductor,” said Van Harlingen, a Willett Professor and head of the department of physics at Illinois.

Until now, this complex odd symmetry state had been predicted by theoreticians, but never fully confirmed. Van Harlingen and colleagues report their latest findings in the Nov. 24 issue of the journal Science.

The order parameter of a superconductor characterizes the nature of the pairing interaction that forms Cooper pairs. It controls many of the superconductor’s properties, and provides a crucial clue to the microscopic mechanism responsible for the superconductivity.

Conventional superconductors that form Cooper pairs through phonon interactions have an “s-wave” symmetry with an isotropic order parameter. Unconventional superconductors, however, have anisotropy in either or both the phase and magnitude of the order parameter.

Ten years ago, Van Harlingen’s group pioneered the Josephson interferometer technique that showed the high-temperature superconducting cuprates had “d-wave” symmetry. They are now applying the technique to a wide range of superconducting materials suspected of having unconventional symmetry.

“Our technique can directly measure phase differences in the superconducting order parameter,” said Van Harlingen, who is also a researcher at the university’s Micro and Nanotechnology Laboratory, and a professor in the university’s Center for Advanced Study, one of the highest forms of campus recognition. “This allows us to make an unambiguous determination of the pairing symmetry in unconventional superconductors,” he said.

To use their interferometer technique, the researchers begin by constructing a corner Josephson junction that straddles different faces of a single crystal of the ruthenate superconductor. They then measure the magnetic field modulation of the supercurrent that reveals the phase shift between different tunneling directions.

If all areas of a Josephson junction have the same order parameter phase, the critical current (measured as a function of applied magnetic field) will create a Fraunhofer diffraction pattern, analogous to a single-slit optical diffraction pattern. However, phase differences in the order parameter on adjacent crystal faces of a corner junction, or the presence of chiral domains (characterized by the direction of phase winding) along a single junction face, will result in modulated diffraction patterns.

“We observed highly modulated diffraction patterns across single edge junctions, which implies the existence of chiral domains,” Van Harlingen said. Abrupt changes seen in the diffraction patterns as a function of magnetic field or time indicate these domains are dynamical, changing their size or orientation.

“The presence of these domains and the distinctly different diffraction patterns observed on orthogonal faces of the same single crystal confirms the ‘p-wave’ triplet spin pairing state and the complex nature of the superconducting order parameter in the ruthenate superconductors,” Van Harlingen said.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>