Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On airplanes, fiber optics poised to reach new heights

20.09.2006
Safer, more reliable optical switches may replace electrical wiring in cockpits

In an effort to provide safer and more reliable components for aircraft, researchers have invented an optical on-off switch that can replace electrical wiring on airplanes with fiber optics for controlling elevators, rudders, and other flight-critical elements. Fiber-optics technology has already transformed life on the ground by replacing copper wire to transmit voice calls, Internet traffic, and other telecommunications. Now, engineers are preparing an important new fiber-optics application for liftoff, with their prototype switch ready for testing on real-life aircraft. The technology also has potential applications on the nation's highways, as a "weigh-in-motion" sensor for measuring the weight of fast-moving commercial trucks without requiring them to stop on a scale. The research is described by Zhaoxia Xie and Henry F. Taylor of Texas A&M University in the current issue of Optics Letters, a journal of the Optical Society of America.

Xie and Taylor's new optical device is simple, but vital for an aircraft: it's an on-off switch. It senses the press of a button from a pilot. Such switches are usually electrically based and require electrical wiring which could get complex and bulky with the many buttons in cockpits and throughout an aircraft. But a system based on a single optical fiber could potentially sense presses from hundreds of buttons simultaneously by detecting light signals coming from different buttons. The crucial component of the Texas A&M switch is called a fiber Fabry-Perot interferometer (FFPI). It consists of two parallel mirrors. When white light passes through the mirrors, some of it bounces between the mirrors, and some passes through. These light waves combine or "interfere" to produce a pattern. The interference pattern changes if the distance between the mirrors changes.

In the Texas A&M design, a small plank-like object, known as a cantilever, is bonded to the interferometer. The cantilever, in turn, is attached to a switch. Pressing the switch creates a force on the cantilever, which causes it to bend, changing the spacing between the mirrors and thereby altering the interference pattern. The altered interference pattern provides a signal to indicate that the switch has been pressed. This information can be transmitted optically to the desired part of the airplane. A network of other interferometers and lasers filters out fluctuations in temperature and other disturbances so that only the pressing of the button registers as a valid signal.

Using fiber optics to transmit signals has specific advantages for aircraft. A fiber-optics system is lightweight and does not take up much room. It is immune from lightning and electromagnetic interference. It also is a safer alternative for planes as it is not susceptible to causing fires. At least 26 accidents or serious incidents in aircraft since 1983 were caused by fires or other failures related to electrical wiring systems, according to the Federal Aviation Administration.

The fiber-optic approach is intended for both military and commercial aircraft. It could either be incorporated into new designs or retrofitted into existing aircraft. Voice communications equipment in newer aircraft is already fiber-optics based, says lead author Xie. Therefore, integrating other aircraft instrumentation into a single optics package could save weight, space, fuel, and construction costs on future aircraft.

Lockheed Martin has been among the supporters of this research. The next step is to test this system on a real airplane.

According to Xie, the technology also has potential applications for other modes of transportation.

"Due to the sheer value of car and truck traffic on our highways, current weighing systems using slow and cumbersome static scales aren't a viable option. Therefore there's a strong demand for an economic, effective and reliable 'weigh-in-motion' system," comments Xie. In the FFPI weigh-in-motion system, the optical sensors would be bonded in a groove of metal bars to measure the strain induced by the truck wheels passing. This could provide an alternative to cumbersome and time-consuming stops that trucks must currently make in highways, she says.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>