Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini spacecraft finds evidence of football-field sized moonlets in Saturn’s A ring

31.03.2006


New observations of propeller-shaped disturbances in Saturn’s A ring indicate the presence of four small, embedded moons -- and most likely millions more, Cornell University astronomers report.


Provided
The left image shows the B ring, Cassini Division, A ring and F ring, with the location of the propeller-shaped disturbances indicated. The center image is a closer view of the A ring, showing the radial locations where propeller features were spotted. In the right-hand image, the propellers appear as double dashes in the two close-up images. The unseen moonlets, each roughly the size of a football field, lie in the center of each structure. (The horizontal lines in the image represent electronic noise and do not correspond to ring features.)



This is the first evidence of the existence of moonlets bridging the gap in size between the larger ring moons Pan and Daphnis (several miles each in diameter) and the much smaller ice particles that comprise the bulk of the rings. The discovery could lead to a better understanding of the origin and formation of Saturn’s rings and the solar system as a whole.

Matthew Tiscareno, a Cornell research associate, is lead author of a paper describing the discovery in the March 30 issue of the journal Nature.


The four disturbances, which appear as pairs of slightly offset bright horizontal streaks in an otherwise bland region of the ring, were captured in two images taken in 2004 by NASA’s Cassini spacecraft. Astronomers say the streaks are indicators of orbiting moons about 100 meters (328 feet) in diameter: about the length of a football field, but still too small for even Cassini’s highly sensitive Imaging Science Subsystem (ISS) to see directly, but large enough to exert an observable gravitational pull on the particles around them.

"The discovery of these intermediate-sized particles tells us that Pan and Daphnis are probably just the largest members of the ring population, rather than interlopers from somewhere else," said Tiscareno.

A continuum of particle sizes lends strong support to the theory that Saturn’s rings were formed when another object fragmented close to the planet, breaking into pieces which were then captured by Saturn’s gravitational pull.

"There has always been the question about whether the rings were primordial material that was unable to grow into a moon or debris left over from a breakup event," said Joseph Burns, Cornell professor of astronomy and of theoretical and applied mechanics and paper co-author, along with Cornell research associate Matthew Hedman and researchers at other institutions. The discovery doesn’t rule out the accretion model, but "it’s a step in that direction," said Tiscareno. "It’s hard for direct accretion to produce particles this large. It’s much easier if you start with a solid icy core, like a shard from a breakup."

The discovery also helps explain fully cleared openings such as the Encke and Keeler gaps within the rings. The gravitational influence of a larger moon like Pan or Daphnis wraps around the circumference of the rings, creating a gap. The smaller moonlets begin to create this effect, the researchers say, but their influence is not strong enough to prevent particles from falling into the rings ahead of and behind them.

Like a motorboat’s wake on a smooth lake, the four observed disturbances are particularly visible since the area they inhabit is otherwise smooth. But the fact that four were found in just two images covering only a tiny fraction of the ring makes it likely that millions more exist. By studying them further, researchers hope to gain a better understanding of how Saturn’s rings formed -- and even about how solar systems form around stars.

"The structures we observe with Cassini are strikingly similar to those seen in many numerical models of the early stages of planetary formation, even though the scales are vastly different," said Carl Murray, a co-author and astronomer at Queen Mary College, University of London. "In this way, Cassini is giving us unique insight into the origin of planets."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the mission for NASA.

During its Saturn tour, as currently planned, Cassini will complete 74 orbits of the ringed planet, 44 close flybys of the moon Titan and numerous flybys of Saturn’s other icy moons.

Blaine Friedlander Jr. | EurekAlert!
Further information:
http://www.news.cornell.edu/stories/March06/Tiscareno.Saturn.lg.html
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>