Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals hidden magnetism in superconductivity

09.03.2006


While studying a compound made of the elements cerium- rhodium-indium, researchers at Los Alamos National Laboratory and the University of Illinois at Urbana-Champaign have discovered that a magnetic state can coexist with superconductivity in a specific temperature and pressure range. The discovery is a step toward a deeper understanding of how Nature is organized in regimes ranging from the fabric of the cosmos to the most fundamental components of elementary particles.



In research published recently in the scientific journal Nature, Los Alamos scientists Tuson Park, Joe D. Thompson, and their colleagues describe the discovery of hidden magnetism in the CeRhIn5 compound. In studying the compound, researchers found that a purely unconventional superconducting phase is separated from a phase of coexisting magnetism and unconventional superconductivity, with the boundary between these two phases controlled by the laws of quantum physics.

Unconventional superconductors are materials that exhibit superconductivity, a complete absence of electrical resistance under cold temperatures, but use exotic mechanisms. Conventional wisdom has long held that the magnetism is excluded as materials change phases, but the researchers now show that it is merely hidden by unconventional superconductivity and can be made to reappear in the presence of an applied magnetic field.


According to Thompson, "this discovery provides an exciting opportunity to better understand how magnetism and unconventional superconductivity are related in more-complex materials and may reveal more about the technologically important field of high temperature superconductors."

At low temperatures, electrons in a metal can pair with each other to create superconductivity, align in a magnetically ordered state, or do neither. Until recently, these mutually exclusive options for electrons were the norm, but the discovery of complex electronic materials like CeRhIn5, which can sustain more exotic forms of superconductivity, now shows that electrons can participate simultaneously in magnetism and superconductivity.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>