Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dense high performance low alloy PM steels

14.10.2005


Miren Sarasola, Bachelor of Physics Science and researcher of the Materials Department at CEIT, has developed dense high performance low alloy PM steels by liquid phase sintering. The Thesis title is : "Development of dense high performance low alloy PM steels by liquid phase sintering".



The master alloy concept as a mean for obtaining high density low alloyed PM steels was revisited. In a first instance, several master alloys previously reported in the literature, were reproduced in order to carry out experimental sintering trials with the aim of understanding the behaviour of these master alloys, mixed in predetermined proportions, with a selection of Fe-based powders. As a secondary objective the accuracy of theoretical predictions based on ThermoCalc calculations was compared against the reported experimental data. A conjunction of this information with additional experiments tending to determine the diffusion paths and rates of a diversity of elements in multicomponent Fe-based systems was used for identifying adequate alloy additions supported by a computer aided alloy design approach.

On these bases, several mater alloys have been specifically designed, under metallurgic and thermodinamic criterion, to provide the formation of wetting liquid phases at low temperature and also, attractive mechanical properties of the steels. The as-sintered density and properties of the alloys is determined by the amount and type of master alloy used, total carbon content, the sintering temperature and time. The performance of the master alloys during sintering is shown for several commercially available Fe-based powders. The microstructural development of the steels is determined, both, by the chemical composition of the Fe-based powder and the chemical reactions taking place between the Fe and the master alloy particles during high temperature sintering. The influence of alloying and the sintering conditions on the final microstructure, density and mechanical properties is also discussed.


The thesis has been given the Schunk Materials Prize 2005 because the work in the field of sintered metal technology has distinguished itself by its scientific significance.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>