Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deflecting asteroids could lead to more versatile spaceprobes

28.09.2005


The UK’s first engineering feasibility study into missions for deflecting asteroids has begun.



The Engineering and Physical Sciences Research Council (EPSRC) is funding a new three-year study into interception and deflection strategies for asteroids found to be on a collision course with Earth. Although there have been similar studies in the past, Dr Gianmarco Radice, department of Aerospace Engineering, University of Glasgow, and Professor Colin McInnes, department of Mechanical Engineering, University of Strathclyde, are approaching the subject in a new way.

“We will be looking at this as engineers. So we want to investigate the practicality of different deflection strategies,” says McInnes. In other words, it is no use having a brilliant deflection scheme if no one can build it with current technology.


Although Hollywood blockbusters have popularised the idea of using nuclear weapons to blow up asteroids, the study will investigate more realistic alternatives such as space mirrors. These would be angled to focus sunlight onto the incoming object. The intense heat would boil away a section of the asteroid, creating a natural rocket that pushes the asteroid in the opposite direction. The study will also look into high-speed collisions to literally knock an asteroid out of the way using no explosives, just a ‘battering ram’ spacecraft.

Asteroids have widely differing compositions, ranging from pure rock or even metal to ice and snow. Knowing what an asteroid is made from, and therefore its likely strength, is the crucial first step in determining the best way to divert it without shattering it. “One of the main objectives of this study is to try to associate a particular deflection strategy with a particular type of asteroid that has to be deviated,” says Radice.

The internal arrangement of Near Earth Objects (NEOs) can critically affect the deviation strategy. Some asteroids, known as rubble piles, are not solid slabs of rock but loose assemblages. Slamming an object into a rubble pile would not be very effective in altering its course, because the rubble would absorb the energy of impact rather like a crumple zone on a car absorbs a crash. Instead, scenarios which melt part of the surface, such as space mirrors, producing jets of gas that gradually ease the object into a new orbit, are favoured.

Yet this is about more than just diverting asteroids, no matter how critical that need may one day become. The biggest part of the study concerns how to intercept such targets. In conventional space exploration, everything is precisely worked out beforehand and targets are chosen that have well-known orbits. That’s how NASA recently bulls-eyed comet Tempel 1 with its Deep Impact mission.

However, a dangerous object is likely to be newly discovered and that means its orbit will be poorly known. “We’d probably have to launch a deflection mission without a clear idea of where we’re aiming,” says McInnes. So, the study will seek to find the best strategies for launching space missions into approximate intercept orbits that can be adjusted later.

To do this, it will investigate the additional fuel that such a spacecraft would require. Because fuel is heavy, spacecraft are traditionally designed to carry little extra. That will have to change with this new approach to space exploration.

Such seat-of-the-pants flying could result in more versatile spacecraft across the board. These would be better able to respond to a variety of unexpected situations. As well as fuel considerations, the team will investigate ‘general purpose’ orbits and flexible navigation strategies that keep a spacecraft’s options open for longer, before committing it to a final destination.

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>