Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-star clusters may be born small and grow by coalescing

12.01.2005


A trio of massive, young star clusters found embedded in a star cloud may shed light on the formation of super-star clusters and globular clusters.


Lower right: a blue image of the spiral galaxy M101 from the Second Palomar Observatory Sky Survey. The box marks the location of NGC 5461.Lower left: A false color image of NGC 5461 made from images taken with the Hubble Space Telescope Wide-Field Planetary Camera 2 using filters F547M, F675W, and F656N (displayed in blue, green, and red, respectively). Young stars and clusters will appear predominantly blue, while the ionized interstellar gas appears red. Credits: NASA, Y.-H. Chu and R. Chen (University of Illinois), and K. Johnson (University of Virginia).
Upper left: A close-up of the core of NGC 5461 taken with the Hubble Space Telescope Advanced Camera for Surveys using the F435W filter to show the clusters and surrounding star cloud.
Credits: NASA, K.D. Kuntz (University of Maryland Baltimore County).



The discovery, made with images taken with the Hubble Space Telescope, is being presented today by You-Hua Chu and Rosie Chen of the University of Illinois at Urbana-Champaign and Kelsey Johnson of the University of Virginia to the American Astronomical Society meeting in San Diego. This finding indicates that super-star clusters may be formed by coalescence of smaller clusters.

The tightly packed group of clusters was found in the core of the active star formation region NGC 5461, within an arm of the giant spiral galaxy M101. This galaxy is located about 23 million light-years away in the constellation Ursa Major (the Big Dipper).


"NGC 5461 has such a high concentration of light in its core that some astronomers have thought it might host a super-star cluster," said Chu, who is a professor of astronomy at Illinois and principal investigator of the project. Super-star clusters, with a total mass of up to 1 million times that of the sun, are five to 50 times more massive than the spectacular R136 cluster at the center of the Tarantula Nebula in the Large Magellanic Cloud. They are believed to be the young counterparts of the massive globular clusters in our galaxy. Hubble Space Telescope images of the core of NGC 5461 revealed a tight group of three massive clusters surrounded by a cloud of stars within a region about 100 light-years in diameter. Although each cluster is comparable to the R136 cluster, the total mass within this small volume is similar to that of a super-star cluster.

"If NGC 5461 were several times farther away, even the Hubble Space Telescope would be unable to resolve this tight group of clusters," said Chen, a graduate student at Illinois. "It is possible that some of the super-star clusters previously reported in distant galaxies actually consist of groups of clusters similar to NGC 5461."

The large amount of mass at the core of NGC 5461 produces a strong gravitational field, causing the clusters and stars to move and interact dynamically. The rapidly fluctuating gravitational field produced by this interaction dissipates the relative motion of the clusters into random motions of individual stars. Eventually, the clusters and surrounding star cloud will merge into one single star cluster. "The Hubble Space Telescope images of NGC 5461 provide a unique glimpse of a super-star cluster in the making," said Johnson, a professor of astronomy at Virginia. "There is no super-star cluster yet, but it is just a matter of time."

The dynamical evolution of the clusters at the core of NGC 5461 is being simulated by astronomy professor Paul Ricker at Illinois. Preliminary results show that under optimal conditions these clusters may merge within a few million years. "Fortunately, NGC 5461 is near enough, and young enough for us to resolve it with the Hubble Space Telescope," Chu said. "We were indeed lucky to catch it at such an opportune time."

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

New findings help to better calculate the oceans’ contribution to climate regulation

15.11.2018 | Life Sciences

Automated adhesive film placement and stringer integration for aircraft manufacture

15.11.2018 | Materials Sciences

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>