Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology to supercharge internet

12.08.2004


Network could operate 100 times faster



Canadian researchers have shown that nanotechnology can be used to pave the way to a supercharged Internet based entirely on light. The discovery could lead to a network 100 times faster than today’s.

In a study published today in Nano Letters, Professor Ted Sargent and colleagues advance the use of one laser beam to direct another with unprecedented control, a featured needed inside future fibre-optic networks. "This finding showcases the power of nanotechnology: to design and create purpose-built custom materials from the molecule up," says Sargent, a professor at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering.


Until now, engineering researchers have been unable to capitalize on theoreticians’ predictions of the power of light to control light. The failure of real materials to live up to their theoretical potential has become known as the "Kuzyk quantum gap" in molecular nonlinear optics. "Molecular materials used to switch light signals with light have, until now, been considerably weaker than fundamental physics say they could be," says Sargent. "With this work, the ultimate capacity to process information-bearing signals using light is within our practical grasp."

To breach the Kuzyk quantum gap, Carleton University chemistry professor Wayne Wang and colleague Connie Kuang designed a material that combined nanometre-sized spherical particles known as "buckyballs" (molecules of carbon atoms resembling soccer balls) with a designed class of polymer. The polymer and buckyball combination created a clear, smooth film designed to make light particles pick up each other’s patterns.

Sargent and U of T colleague Qiying Chen then studied the optical properties of this new hybrid material. They found that the material was able to process information carried at telecommunications wavelengths – the infrared colours of light used in fibre-optic cables. "Photons – particles of light – interacted unusually strongly with one another across the set of wavelengths used for communications," says Sargent. "Calculations based on these measurements reveal that we came closer than ever to achieving what quantum mechanical physics tells us is possible."

According to Sargent, future fibre-optic communication systems could relay signals around the global network with picosecond (one trillionth of a second) switching times, resulting in an Internet 100 times faster. To do this, they need to avoid unnecessary conversions of signals between optical and electronic form. Says Sargent: "By creating a new hybrid material that can harness a light beam’s power, we’ve demonstrated a new class of materials which meets the engineering needs of future photonic networks."

The paper addresses a limit originally predicted by Washington State University theorist and physicist Professor Mark Kuzyk. Kuzyk was the first to predict the fundamental physical limits on the nonlinear properties of molecular materials in 2000 and says that by approaching the quantum limit, the U of T-Carleton team has succeeded where all other researchers have failed.

"The report on reaching the quantum limit by the Toronto and Carleton team of researchers is a major advance in the science of nonlinear optical materials that will impact directly many important technologies," says Kuzyk. "This intelligent nanoscale approach to engineering nonlinear-optical materials, which is guided by principles of quantum physics, is the birth of a new and significant materials development paradigm in synthetic research."

Ted Sargent | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>