Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant galaxy’s violent past comes into focus

11.05.2004


Long-exposure images of the giant elliptical galaxy M87 by NASA’s Chandra X-ray Observatory, together with radio observations, have provided spectacular evidence of repetitive outbursts from the vicinity of the galaxy’s supermassive black hole. Magnetized rings, bubbles, plumes and jets ranging in size from a few thousand to a few hundred thousand light years point to ongoing violent activity for hundreds of millions of years.


Chandra image of the giant elliptical galaxy M87 (NASA/CXC)



"The hot X-ray emitting gas extending for hundreds of thousands of light years around M87 reveals a record of episodes of black hole activity," said Paul Nulsen of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. and an author of an Astrophysical Journal paper describing the latest Chandra observations. "With these detailed observations, we are beginning to understand how the central supermassive black hole transfers enormous amounts of energy over vast reaches of space."

M87, located in the middle of the Virgo galaxy cluster, is surrounded by an extensive atmosphere of multi-million degree Celsius gas. Chandra’s long-exposure image has allowed astronomers to see in more detail structures discovered by previous observations with Chandra and other X-ray telescopes, to discover new features, and to make specific comparisons with radio images, which trace the presence of high-energy electrons in a magnetic field.


The picture that emerges is one in which the infall of material toward a central supermassive black hole produces a magnetized jet of high-energy particles that blasts away from the vicinity of the black hole at near the speed of light. As a jet plows into the surrounding gas, a buoyant, magnetized bubble of high-energy particles is created, and an intense sound wave rushes ahead of the expanding bubble.

In Chandra’s image of M87, X-rays from the jet dominate the central region of the galaxy. The jet is thought to be pointed at a small angle toward the line of sight, out of the plane of the image. Bright arcs around dark cavities of faint X-ray emission appear to be gas that has been swept up on rising, buoyant bubbles that were created a few million years ago (in M87 time — M87 is 50 million light years from Earth). These bubbles, which rise like hot air from a fire or explosion in the atmosphere, show up as bright regions in radio images. An alternative interpretation, presented in the June 1, 2004 issue of Astrophysical Journal Letters by Hua Feng of Tsinghau University in China and colleagues, is that the rings are shock waves that surround the jet and are seen in projection.

An image processed to bring out faint features reveals two circular rings with radii of 45 thousand and 55 thousand light years, respectively. These features are likely sound waves produced by earlier explosions about 10 million and 14 million years ago, respectively. A very faint arc at an even larger distance has a probable age of 100 million years.

Spectacular, curved X-ray plumes extending from the upper left to the lower right illustrate in dramatic fashion how the central black hole can affect the galaxy and its environment over huge distances. The arm on the upper left extends more than 75 thousand light years, and the one on the lower right more than 100 thousand light years from the center of the galaxy. These features are thought to be gas carried out from the center of the galaxy on buoyant bubbles created by outbursts tens of millions of years ago.

A growing body of evidence from other galaxy clusters suggests that episodic outbursts from supermassive black holes in giant, centrally located galaxies are a common feature. These outbursts, which produce magnetized jets and bubbles of high energy particles, along with mammoth sound waves, could be due to the self-regulated inflow of gas into the black hole — gas around the black hole cools and flows inward to feed the black hole, producing an outburst which shuts down the inflow for a few million years, at which point the cycle begins again. Or, the cause could be a much more dramatic event, like the cannibalization of a smaller galaxy, with the subsequent merger of two supermassive black holes in the center.

The results from Nulsen’s team, which included William Forman and other colleagues from the CfA, were based on approximately 40 hours of Chandra observations with its Advanced CCD Imaging Spectrometer. Andrew Young of the University of Maryland in College Park, and colleagues, have published a paper identifying many of the X-ray features in M87 in the November 10, 2003 issue of The Astrophysical Journal based on a shorter Chandra observation.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-135.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>