Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on a proton packed with surprises

05.12.2003


The structure of the proton is under the microscope at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, where a series of experiments continues to produce unexpected results.


The shape of the proton can differ, depending on the angular momentum of quarks.
(Gerald A. Miller/University of Washington)



Simple theories of proton structure say that the way electric charge is distributed in the proton is the same as the magnetization distribution. But Jefferson Lab results indicate these distributions are definitely different.

A fundamental goal of nuclear physics is to understand the structure and behavior of strongly interacting matter in terms of its building blocks, quarks and gluons. An important step toward this goal is a description of the internal structure for the proton and neutron, collectively known as nucleons. Jefferson Lab was built, in part, to study the physics of quarks and gluons and their connection to larger composite objects like protons.


The proton is the positively charged core of the hydrogen atom, the most abundant element in the universe. It is made up of three charged quarks and the gluons that bind them together. The quarks move around, so the proton has a charge distributed over its size. This leads to the generation of an electric current, which in turn induces a magnetic field. In addition, quarks and gluons both have spin, leading to a magnetic moment. The combination of the total magnetic field and the magnetic moment is a quantity called magnetization.

Jefferson Lab is uniquely positioned to measure the proton’s electric charge and magnetization distributions, the so-called electromagnetic form factors that describe its internal structure.

In two recent Jefferson Lab experiments, researchers directed the accelerator’s polarized electron beam toward liquid hydrogen cooled to 17 Kelvin (–429°F). Each electron in the beam has an intrinsic angular momentum, or spin. The beam of electrons is said to be "polarized" if their spins point — on average — in a specific direction. As an electron collided with a proton in the hydrogen target, the proton recoiled, becoming polarized during the interaction. The scattered electron and recoiling proton were then detected in two high-resolution spectrometers (HRS), and the proton polarization was measured by a specially developed detector called a proton polarimeter.

From these measurements, the researchers could obtain a ratio of electric charge distribution to magnetization distribution — the electric and magnetic form factors — at various depths inside the proton. Their experiments revealed unexpected and significantly different energy-dependence for the form factors. The data showed that the proton’s charge distribution is not the same as its magnetization distribution; the charge distribution is more spread out than the magnetization.

These results are very interesting to both experimental and theoretical physicists. The Jefferson Lab data has already had an impact on theoretical models, helping rule out some models, directing others toward a better description of internal proton structure.

One such model was developed in 1996 by physicists Gerald A. Miller and Michael R. Frank, both from the University of Washington in Seattle, and Byron K. Jennings from TRIUMF in Vancouver. The researchers predicted a fall-off in the ratio of the electromagnetic form factors but, at the time, they didn’t realize that experimental confirmation was possible. When the results of the first Jefferson Lab experiments probing proton structure were announced in 2000, the prediction was confirmed.

An interesting by-product of Miller’s theory is that the proton is not necessarily spherical in shape. Depending on the angular momentum of the quarks, the proton could be spherical in shape or more like a doughnut, a pretzel or a peanut. Miller says the variety of shapes is nearly limitless, and depends on the momentum of the quarks and the angle between the spin of the quark and the spin of the proton.

Media contact: Linda Ware, Jefferson Lab Public Affairs Manager, 757-268-7689, ware@jlab.org
Technical contacts: Vina Punjabi (punjabi@jlab.org); Charles Perdrisat (perdrisa@jlab.org)

Linda Ware | Jefferson Lab
Further information:
http://www.jlab.org/div_dept/dir_off/public_affairs/news_releases/2003/03protonshape.html

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>