Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectral emissivity measurements for radiation thermometry

28.05.2008
Industry and research are increasingly relying on non-contact temperature measurements with the aid of heat radiation, for example, for the reliable and reproducible drying of car paint.

In order to attain exact and reliable results, the emissivity of the measured surface has to be known. It can only be determined precisely in complex measuring facilities. The Physikalisch-Technische Bundesanstalt (PTB) has developed a modern emissivity measuring facility for industry-oriented calibrations.

Today, the accuracy of industrial temperature measurements carried out with contact-free radiation thermometers, is often no longer limited by the quality of the radiation thermometers, but rather by insufficient knowledge of the emissivity of the surface observed. Industrial radiation thermometers can furnish a resolution of up to 20 mK, with an uncertainty of 1 K for temperature measurements of 100 °C. In contrast to this, the directional spectral emissivities of surfaces can often only be specified with standard measurement uncertainties of 5 %. When measuring a temperature of 100 °C in the spectral range by around 10 µm, this corresponds to a temperature uncertainty of typically 5 K.

The emissivity is not a constant, but rather changes in general with changes of the surface (roughness, oxidation, impurities etc.), the observation angle, the observation wavelength as well as the temperature. Furthermore, it is often distributed inhomogeneously over the surface. Precise temperature measurements therefore demand exact knowledge of the emissivity. To determine the variety of dependencies of the emissivity on the above-mentioned parameters, complex measuring facilities are necessary.

The spectral emissivity is measured in the PTB by comparing the radiances of a cavity radiator of high quality – resembling an almost ideal black body – with the sample to be investigated by means of a Fourier transform spectrometer, whereby the radiation of the environment and the inherent radiation of the spectrometer are taken into consideration. Holding the sample in a temperature-regulated hemisphere hereby guarantees a constant radiation exchange with the environment. The apparatus allows the determination of the directional spectral emissivity as well as of the total emissivity of opaque samples under ambient conditions in a temperature range from 80 °C to 250 °C and a wavelength range from 4 µm to 40 µm under emission angles of 5° to 70° with a relative standard measurement uncertainly of better than 2 %. The extrapolation of the measured values of the directed spectral emissivity for emission angles above 70° then allows the hemispherical spectral emissivity, which is especially important for calculations of the net radiation exchange, as well as the total emissivity to be calculated. The homogeneity of the directional spectral emissivity at 4 µm is determined with the help of a thermography camera.

The results of the first orders from customers have served, for example, to optimise the paint drying process in the automobile industry, the thermal design of furnaces as well as the monitoring of glass forming processes.

Another measuring facility is currently being set up in the PTB which will allow emissivity measurements to be performed under vacuum conditions in an extended temperature and wavelength range – in particular for space applications.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0813.htm
Contact:
Dr. Christian Monte, PTB Working Group 7.31 High-temperature Scale, Phone +4930-3481-7246, e-mail: christian.monte@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527.html

More articles from Physics and Astronomy:

nachricht Breaking the bond: To take part or not?
09.07.2018 | Universität Innsbruck

nachricht Particle Physicists at TU Dresden involved in the discovery of scattering of W and Z bosons
09.07.2018 | Technische Universität Dresden

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

High-power thermoelectric generator utilizes thermal difference of only 5ºC

09.07.2018 | Power and Electrical Engineering

Melting bacteria to decipher antibiotic resistance

09.07.2018 | Life Sciences

Research icebreaker Polarstern departs for the Fram Strait

09.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>